1 : 1 Mutual Synchronization of Periodic Oscillations

Author(s):  
Alexander Balanov ◽  
Natalia Janson ◽  
Dmitry Postnov ◽  
Olga Sosnovtseva
2005 ◽  
Vol 72 (2) ◽  
Author(s):  
A. G. Balanov ◽  
N. B. Janson ◽  
V. V. Astakhov ◽  
P. V. E. McClintock

2017 ◽  
Vol 827 ◽  
pp. 664-693 ◽  
Author(s):  
Samadhan A. Pawar ◽  
Akshay Seshadri ◽  
Vishnu R. Unni ◽  
R. I. Sujith

Thermoacoustic instability is the result of a positive coupling between the acoustic field in the duct and the heat release rate fluctuations from the flame. Recently, in several turbulent combustors, it has been observed that the onset of thermoacoustic instability is preceded by intermittent oscillations, which consist of bursts of periodic oscillations amidst regions of aperiodic oscillations. Quantitative analysis of the intermittency route to thermoacoustic instability has been performed hitherto using the pressure oscillations alone. We perform experiments on a laboratory-scale bluff-body-stabilized turbulent combustor with a backward-facing step at the inlet to obtain simultaneous data of acoustic pressure and heat release rate fluctuations. With this, we show that the onset of thermoacoustic instability is a phenomenon of mutual synchronization between the acoustic pressure and the heat release rate signals, thus emphasizing the importance of the coupling between these non-identical oscillators. We demonstrate that the stable operation corresponds to desynchronized aperiodic oscillations, which, with an increase in the mean velocity of the flow, transition to synchronized periodic oscillations. In between these states, there exists a state of intermittent phase synchronized oscillations, wherein the two oscillators are synchronized during the periodic epochs and desynchronized during the aperiodic epochs of their oscillations. Furthermore, we discover two different types of limit cycle oscillations in our system. We notice a significant increase in the linear correlation between the acoustic pressure and the heat release rate oscillations during the transition from a lower-amplitude limit cycle to a higher-amplitude limit cycle. Further, we present a phenomenological model that qualitatively captures all of the dynamical states of synchronization observed in the experiment. Our analysis shows that the times at which vortices that are shed from the inlet step reach the bluff body play a dominant role in determining the behaviour of the limit cycle oscillations.


1979 ◽  
Vol 46 ◽  
pp. 77-88
Author(s):  
Edward L. Robinson

Three distinct kinds of rapid variations have been detected in the light curves of dwarf novae: rapid flickering, short period coherent oscillations, and quasi-periodic oscillations. The rapid flickering is seen in the light curves of most, if not all, dwarf novae, and is especially apparent during minimum light between eruptions. The flickering has a typical time scale of a few minutes or less and a typical amplitude of about .1 mag. The flickering is completely random and unpredictable; the power spectrum of flickering shows only a slow decrease from low to high frequencies. The observations of U Gem by Warner and Nather (1971) showed conclusively that most of the flickering is produced by variations in the luminosity of the bright spot near the outer edge of the accretion disk around the white dwarf in these close binary systems.


1981 ◽  
Vol 42 (C7) ◽  
pp. C7-51-C7-56
Author(s):  
K. Aoki ◽  
T. Kobayashi ◽  
K. Yamamoto

1998 ◽  
Vol 507 (1) ◽  
pp. 316-326 ◽  
Author(s):  
Dragoljub Marković ◽  
Frederick K. Lamb

2016 ◽  
Vol 461 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Marcio G. B. de Avellar ◽  
Mariano Méndez ◽  
Diego Altamirano ◽  
Andrea Sanna ◽  
Guobao Zhang

2012 ◽  
Vol 746 (1) ◽  
pp. L10 ◽  
Author(s):  
Joshua C. Dolence ◽  
Charles F. Gammie ◽  
Hotaka Shiokawa ◽  
Scott C. Noble

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 279
Author(s):  
Zdeněk Stuchlík ◽  
Jaroslav Vrba

We study epicyclic oscillatory motion along circular geodesics of the Simpson–Visser meta-geometry describing in a unique way regular black-bounce black holes and reflection-symmetric wormholes by using a length parameter l. We give the frequencies of the orbital and epicyclic motion in a Keplerian disc with inner edge at the innermost circular geodesic located above the black hole outer horizon or on the our side of the wormhole. We use these frequencies in the epicyclic resonance version of the so-called geodesic models of high-frequency quasi-periodic oscillations (HF QPOs) observed in microquasars and around supermassive black holes in active galactic nuclei to test the ability of this meta-geometry to improve the fitting of HF QPOs observational data from the surrounding of supermassive black holes. We demonstrate that this is really possible for wormholes with sufficiently high length parameter l.


Sign in / Sign up

Export Citation Format

Share Document