PERIODIC OSCILLATIONS AND TURBULENCE OF HOT-CARRIER PLASMA AT 4.2 K IN n-GaAs

1981 ◽  
Vol 42 (C7) ◽  
pp. C7-51-C7-56
Author(s):  
K. Aoki ◽  
T. Kobayashi ◽  
K. Yamamoto
1979 ◽  
Vol 46 ◽  
pp. 77-88
Author(s):  
Edward L. Robinson

Three distinct kinds of rapid variations have been detected in the light curves of dwarf novae: rapid flickering, short period coherent oscillations, and quasi-periodic oscillations. The rapid flickering is seen in the light curves of most, if not all, dwarf novae, and is especially apparent during minimum light between eruptions. The flickering has a typical time scale of a few minutes or less and a typical amplitude of about .1 mag. The flickering is completely random and unpredictable; the power spectrum of flickering shows only a slow decrease from low to high frequencies. The observations of U Gem by Warner and Nather (1971) showed conclusively that most of the flickering is produced by variations in the luminosity of the bright spot near the outer edge of the accretion disk around the white dwarf in these close binary systems.


1988 ◽  
Vol 49 (C4) ◽  
pp. C4-779-C4-782 ◽  
Author(s):  
C. BERGONZONI ◽  
R. BENECCHI ◽  
P. CAPRARA

1988 ◽  
Vol 49 (C4) ◽  
pp. C4-651-C4-655 ◽  
Author(s):  
R. BELLENS ◽  
P. HEREMANS ◽  
G. GROESENEKEN ◽  
H. E. MAES

1988 ◽  
Vol 49 (C4) ◽  
pp. C4-787-C4-790
Author(s):  
P. T.J. BIERMANS ◽  
T. POORTER ◽  
H. J.H. MERKS-EPPINGBROEK

Author(s):  
Franco Stellari ◽  
Peilin Song ◽  
James C. Tsang ◽  
Moyra K. McManus ◽  
Mark B. Ketchen

Abstract Hot-carrier luminescence emission is used to diagnose the cause of excess quiescence current, IDDQ, in a low power circuit implemented in CMOS 7SF technology. We found by optical inspection of the chip that the high IDDQ is related to the low threshold, Vt, device process and in particular to transistors with minimum channel length (0.18 μm). In this paper we will also show that it is possible to gain knowledge regarding the operating conditions of the IC from the analysis of optical emission due to leakage current, aside from simply locating defects and failures. In particular, we will show how it is possible to calculate the voltage drop across the circuit power grid from time-integrated acquisitions of leakage luminescence.


Sign in / Sign up

Export Citation Format

Share Document