Evaluation Method for Decision Rule Sets

Author(s):  
Yuhua Qian ◽  
Jiye Liang
1999 ◽  
Author(s):  
Robert E. Marmelstein ◽  
Lonnie P. Hammack ◽  
Gary B. Lamont
Keyword(s):  

Author(s):  
T. Oikawa ◽  
H. Kosugi ◽  
F. Hosokawa ◽  
D. Shindo ◽  
M. Kersker

Evaluation of the resolution of the Imaging Plate (IP) has been attempted by some methods. An evaluation method for IP resolution, which is not influenced by hard X-rays at higher accelerating voltages, was proposed previously by the present authors. This method, however, requires truoblesome experimental preperations partly because specially synthesized hematite was used as a specimen, and partly because a special shape of the specimen was used as a standard image. In this paper, a convenient evaluation method which is not infuenced by the specimen shape and image direction, is newly proposed. In this method, phase contrast images of thin amorphous film are used.Several diffraction rings are obtained by the Fourier transformation of a phase contrast image of thin amorphous film, taken at a large under focus. The rings show the spatial-frequency spectrum corresponding to the phase contrast transfer function (PCTF). The envelope function is obtained by connecting the peak intensities of the rings. The evelope function is offten used for evaluation of the instrument, because the function shows the performance of the electron microscope (EM).


2002 ◽  
Vol 7 (2) ◽  
pp. 1-4, 12 ◽  
Author(s):  
Christopher R. Brigham

Abstract To account for the effects of multiple impairments, evaluating physicians must provide a summary value that combines multiple impairments so the whole person impairment is equal to or less than the sum of all the individual impairment values. A common error is to add values that should be combined and typically results in an inflated rating. The Combined Values Chart in the AMA Guides to the Evaluation of Permanent Impairment, Fifth Edition, includes instructions that guide physicians about combining impairment ratings. For example, impairment values within a region generally are combined and converted to a whole person permanent impairment before combination with the results from other regions (exceptions include certain impairments of the spine and extremities). When they combine three or more values, physicians should select and combine the two lowest values; this value is combined with the third value to yield the total value. Upper extremity impairment ratings are combined based on the principle that a second and each succeeding impairment applies not to the whole unit (eg, whole finger) but only to the part that remains (eg, proximal phalanx). Physicians who combine lower extremity impairments usually use only one evaluation method, but, if more than one method is used, the physician should use the Combined Values Chart.


1997 ◽  
Vol 78 (02) ◽  
pp. 794-798 ◽  
Author(s):  
Bowine C Michel ◽  
Philomeen M M Kuijer ◽  
Joseph McDonnell ◽  
Edwin J R van Beek ◽  
Frans F H Rutten ◽  
...  

Summary Background: In order to improve the use of information contained in the medical history and physical examination in patients with suspected pulmonary embolism and a non-high probability ventilation-perfusion scan, we assessed whether a simple, quantitative decision rule could be derived for the diagnosis or exclusion of pulmonary embolism. Methods: In 140 consecutive symptomatic patients with a non- high probability ventilation-perfusion scan and an interpretable pulmonary angiogram, various clinical and lung scan items were collected prospectively and analyzed by multivariate stepwise logistic regression analysis to identify the most informative combination of items. Results: The prevalence of proven pulmonary embolism in the patient population was 27.1%. A decision rule containing the presence of wheezing, previous deep venous thrombosis, recently developed or worsened cough, body temperature above 37° C and multiple defects on the perfusion scan was constructed. For the rule the area under the Receiver Operating Characteristic curve was larger than that of the prior probability of pulmonary embolism as assessed by the physician at presentation (0.76 versus 0.59; p = 0.0097). At the cut-off point with the maximal positive predictive value 2% of the patients scored positive, at the cut-off point with the maximal negative predictive value pulmonary embolism could be excluded in 16% of the patients. Conclusions: We derived a simple decision rule containing 5 easily interpretable variables for the patient population specified. The optimal use of the rule appears to be in the exclusion of pulmonary embolism. Prospective validation of this rule is indicated to confirm its clinical utility.


Sign in / Sign up

Export Citation Format

Share Document