scholarly journals A New PSO Algorithm with Crossover Operator for Global Optimization Problems

Author(s):  
Millie Pant ◽  
Radha Thangaraj ◽  
Ajith Abraham
2013 ◽  
Vol 373-375 ◽  
pp. 1131-1134
Author(s):  
Wei Yi Qian ◽  
Guang Lei Liu

We propose a modified particle swarm optimization (PSO) algorithm named SPSO for the global optimization problems. In SPSO, we introduce the crossover operator in order to increase the diversity of the swarm. The crossover operator is contracted by forming a simplex. The crossover operator is used if the diversity of the swarm is below a threshold (denoted hlow) and continues until the diversity reaches the required value (hhigh). The six test problems are used for numerical study. Numerical results indicate that the proposed algorithm is better than some existing PSO.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550017 ◽  
Author(s):  
Aderemi Oluyinka Adewumi ◽  
Akugbe Martins Arasomwan

This paper presents an improved particle swarm optimization (PSO) technique for global optimization. Many variants of the technique have been proposed in literature. However, two major things characterize many of these variants namely, static search space and velocity limits, which bound their flexibilities in obtaining optimal solutions for many optimization problems. Furthermore, the problem of premature convergence persists in many variants despite the introduction of additional parameters such as inertia weight and extra computation ability. This paper proposes an improved PSO algorithm without inertia weight. The proposed algorithm dynamically adjusts the search space and velocity limits for the swarm in each iteration by picking the highest and lowest values among all the dimensions of the particles, calculates their absolute values and then uses the higher of the two values to define a new search range and velocity limits for next iteration. The efficiency and performance of the proposed algorithm was shown using popular benchmark global optimization problems with low and high dimensions. Results obtained demonstrate better convergence speed and precision, stability, robustness with better global search ability when compared with six recent variants of the original algorithm.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.


2012 ◽  
Vol 2012 ◽  
pp. 1-36 ◽  
Author(s):  
Jui-Yu Wu

This work presents a hybrid real-coded genetic algorithm with a particle swarm optimization (RGA-PSO) algorithm and a hybrid artificial immune algorithm with a PSO (AIA-PSO) algorithm for solving 13 constrained global optimization (CGO) problems, including six nonlinear programming and seven generalized polynomial programming optimization problems. External RGA and AIA approaches are used to optimize the constriction coefficient, cognitive parameter, social parameter, penalty parameter, and mutation probability of an internal PSO algorithm. CGO problems are then solved using the internal PSO algorithm. The performances of the proposed RGA-PSO and AIA-PSO algorithms are evaluated using 13 CGO problems. Moreover, numerical results obtained using the proposed RGA-PSO and AIA-PSO algorithms are compared with those obtained using published individual GA and AIA approaches. Experimental results indicate that the proposed RGA-PSO and AIA-PSO algorithms converge to a global optimum solution to a CGO problem. Furthermore, the optimum parameter settings of the internal PSO algorithm can be obtained using the external RGA and AIA approaches. Also, the proposed RGA-PSO and AIA-PSO algorithms outperform some published individual GA and AIA approaches. Therefore, the proposed RGA-PSO and AIA-PSO algorithms are highly promising stochastic global optimization methods for solving CGO problems.


Author(s):  
D. O. Zaharov ◽  
A. P. Karpenko

The article objective is to study a new League Championship Algorithm (LCA) algorithm efficiency by its comparing with the efficiency of the Particle Swarm optimization (PSO) algorithm.The article presents a brief description of the terms used in the League Championship algorithm, describes the basic rules of the algorithm, on the basis of which the iterative process for solving the global optimization problem is built.Gives a detailed description of the League Championship algorithm, which comprises a flowchart of the algorithm, as well as a formalization of all its main steps.Depicts an exhaustive description of the software developed to implement the League Championship algorithm to solve global optimization problems.Briefly describes the modified particle swarm algorithm. Presents the values of all free parameters of the algorithm and the algorithm modifications, which make it different from the classical version, as well.The main part of the article shows the results of a great deal of computational experiments using two abovementioned algorithms. All the performance criteria, used for assessment of the algorithms efficiency, are given.Computational experiments were performed using the spherical function, as well as the Rosenbrock, Rastrigin, and Ackley functions. The results of the experiments are summarized in Tables, and also illustrated in Figures. Experiments were performed for the vector dimension of the variable parameters that is equal to 2, 4, 8, 16, 32, and 64.An analysis of the results of computational experiments involves a full assessment of the efficiency of the League Championship algorithm, and also provides an answer about expediency for further algorithm development.It is shown that the League Championship algorithm presented in the article has a high development potential and needs further work for its study.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Jui-Yu Wu

Stochastic global optimization (SGO) algorithms such as the particle swarm optimization (PSO) approach have become popular for solving unconstrained global optimization (UGO) problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO) method and an artificial immune algorithm-based PSO (AIA-PSO) method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.


Author(s):  
Wenbin Liu ◽  
Nengsheng Luo ◽  
Guo Pan ◽  
Aijia Ouyang

A chaos particle swarm optimization (CPSO) algorithm based on the chaos operator (CS) is proposed for global optimization problems and parameter inversion of the nonlinear sun shadow model in our study. The CPSO algorithm combines the local search ability of CS and the global search ability of PSO algorithm. The CPSO algorithm can not only solve the global optimization problems effectively, but also address the parameter inversion problems of the date of sun shadow model location successfully. The results of numerical experiment and simulation experiment show that the CPSO algorithm has higher accuracy and faster convergence than the-state-of-the-art techniques. It can effectively improve the computing accuracy and computing efficiency of the global optimization problems, and also provide a novel method to solve the problems of integer parameter inversion in real life.


2013 ◽  
Vol 32 (4) ◽  
pp. 981-985
Author(s):  
Ya-fei HUANG ◽  
Xi-ming LIANG ◽  
Yi-xiong CHEN

2020 ◽  
Author(s):  
Alberto Bemporad ◽  
Dario Piga

AbstractThis paper proposes a method for solving optimization problems in which the decision-maker cannot evaluate the objective function, but rather can only express a preference such as “this is better than that” between two candidate decision vectors. The algorithm described in this paper aims at reaching the global optimizer by iteratively proposing the decision maker a new comparison to make, based on actively learning a surrogate of the latent (unknown and perhaps unquantifiable) objective function from past sampled decision vectors and pairwise preferences. A radial-basis function surrogate is fit via linear or quadratic programming, satisfying if possible the preferences expressed by the decision maker on existing samples. The surrogate is used to propose a new sample of the decision vector for comparison with the current best candidate based on two possible criteria: minimize a combination of the surrogate and an inverse weighting distance function to balance between exploitation of the surrogate and exploration of the decision space, or maximize a function related to the probability that the new candidate will be preferred. Compared to active preference learning based on Bayesian optimization, we show that our approach is competitive in that, within the same number of comparisons, it usually approaches the global optimum more closely and is computationally lighter. Applications of the proposed algorithm to solve a set of benchmark global optimization problems, for multi-objective optimization, and for optimal tuning of a cost-sensitive neural network classifier for object recognition from images are described in the paper. MATLAB and a Python implementations of the algorithms described in the paper are available at http://cse.lab.imtlucca.it/~bemporad/glis.


Sign in / Sign up

Export Citation Format

Share Document