Human Cytomegalovirus Modulation of Signal Transduction

Author(s):  
A. D. Yurochko
1998 ◽  
Vol 187 (5) ◽  
pp. 675-683 ◽  
Author(s):  
Daniel M. Miller ◽  
Brian M. Rahill ◽  
Jeremy M. Boss ◽  
Michael D. Lairmore ◽  
Joan E. Durbin ◽  
...  

Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to persist for decades in its host. HCMV has evolved protean countermeasures for anti-HCMV cellular immunity that facilitate establishment of persistence. Recently it has been shown that HCMV inhibits interferon γ (IFN-γ)–stimulated MHC class II expression, but the mechanism for this effect is unknown. IFN-γ signal transduction (Jak/Stat pathway) and class II transactivator (CIITA) are required components for IFN-γ–stimulated MHC class II expression. In this study, we demonstrate that both a clinical isolate and a laboratory strain of HCMV inhibit inducible MHC class II expression at the cell surface and at RNA level in human endothelial cells and fibroblasts. Moreover, reverse transcriptase polymerase chain reaction and Northern blot analyses demonstrate that neither CIITA nor interferon regulatory factor 1 are upregulated in infected cells. Electrophoretic mobility shift assays reveal a defect in IFN-γ signal transduction, which was shown by immunoprecipitation to be associated with a striking decrease in Janus kinase 1 (Jak1) levels. Proteasome inhibitor studies with carboxybenzyl-leucyl-leucyl-leucine vinyl sulfone suggest an HCMV-associated enhancement of Jak1 protein degradation. This is the first report of a mechanism for the HCMV-mediated disruption of inducible MHC class II expression and a direct virus-associated alteration in Janus kinase levels. These findings are yet another example of the diverse mechanisms by which HCMV avoids immunosurveillance and establishes persistence.


2005 ◽  
Vol 79 (8) ◽  
pp. 5035-5046 ◽  
Author(s):  
James Netterwald ◽  
Shaojun Yang ◽  
Weijia Wang ◽  
Salena Ghanny ◽  
Michael Cody ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) infection directly initiates a signal transduction pathway that leads to activation of a large number of cellular interferon-stimulated genes (ISGs). Our previous studies demonstrated that two interferon response elements, the interferon-stimulated response element and gamma interferon-activated site (GAS), in the ISG promoters serve as HCMV response sites (VRS). Interestingly, two GAS-like VRS elements (VRS1) were also present in the HCMV major immediate-early promoter-enhancer (MIEP/E). In this study, the importance of these VRS elements in viral replication was investigated. We demonstrate that the expression of the major IE genes, IE1 and IE2, is interferon inducible. To understand the biological significance of this signal transduction pathway in HCMV major IE expression, the two VRS1 in the MIEP/E were mutated. Mutant HCMVs in which the VRS elements were deleted or that contained point mutations grew dramatically more slowly than wild-type virus at a low multiplicity of infection (MOI). Insertion of wild-type VRS1 into the mutant viral genome rescued the slow growth phenotype. Furthermore, the expression levels of major IE RNAs and proteins were greatly reduced during infection with the VRS mutants at a low MOI. HCMV microarray analysis indicated that infection of host cells with the VRS mutant virus resulted in a global reduction in the expression of viral genes. Collectively, these data demonstrate that the two VRS elements in the MIEP/E are necessary for efficient viral gene expression and replication. This study suggests that although the HCMV-initiated signal transduction pathway results in induction of cellular antiviral genes, it also functions to stimulate viral major IE gene expression. This might be a new viral strategy in which the pathway is used to regulate gene expression and play a role in reactivation.


Author(s):  
Bert Ph. M. Menco

Vertebrate olfactory receptor cells are specialized neurons that have numerous long tapering cilia. The distal parts of these cilia line the interface between the external odorous environment and the luminal surface of the olfactory epithelium. The length and number of these cilia results in a large surface area that presumably increases the chance that an odor molecule will meet a receptor cell. Advanced methods of cryoprepration and immuno-gold labeling were particularly useful to preserve the delicate ultrastructural and immunocytochemical features of olfactory cilia required for localization of molecules involved in olfactory signal-transduction. We subjected olfactory tissues to freeze-substitution in acetone (unfixed tissues) or methanol (fixed tissues) followed by low temperature embedding in Lowicryl K11M for that purpose. Tissue sections were immunoreacted with several antibodies against proteins that are presumably important in olfactory signal-transduction.


2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


2001 ◽  
Vol 120 (5) ◽  
pp. A700-A700
Author(s):  
S WIMERMACKIN ◽  
R HOLMES ◽  
A WOLF ◽  
W LENCER ◽  
M JOBLING

Sign in / Sign up

Export Citation Format

Share Document