Robust GPS/INS-Aided Localization and Mapping Via GPS Bias Estimation

Author(s):  
Paul Vernaza ◽  
Daniel D. Lee
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jun Cheng ◽  
Liyan Zhang ◽  
Qihong Chen

The initialization process has a great effect on the performance of the monocular visual inertial simultaneous localization and mapping (VI-SLAM) system. The initial estimation is usually solved by least squares such as the Gauss-Newton (G-N) algorithm, but the large iteration increment might lead to the slow convergence or even divergence. In order to solve this problem, an improved iterative strategy for initial estimation is proposed. The methodology of our initialization can be divided into four steps: Firstly, the pure visual ORB-SLAM model is utilized to make all variables observable. Secondly, the IMU preintegration technology is adopted for IMU-camera frequency alignment at the same time with key frame generation. Thirdly, an improved iterative strategy which is based on the trust region is introduced for the gyroscope bias estimation as well as the gravity direction is refined. Finally, the accelerometer bias and visual scale are estimated on the basis of previous estimations. Experimental results on the public datasets show that the estimation of initial values can be converged faster, as well as the velocity and pose of sensor suite can be estimated more accurately than the original method.


2021 ◽  
Vol 11 (13) ◽  
pp. 5963
Author(s):  
Phuc Thanh-Thien Nguyen ◽  
Shao-Wei Yan ◽  
Jia-Fu Liao ◽  
Chung-Hsien Kuo

In the industrial environment, Autonomous Guided Vehicles (AGVs) generally run on a planned route. Among trajectory-tracking algorithms for unmanned vehicles, the Pure Pursuit (PP) algorithm is prevalent in many real-world applications because of its simple and easy implementation. However, it is challenging to decelerate the AGV’s moving speed when turning on a large curve path. Moreover, this paper addresses the kidnapped-robot problem occurring in spare LiDAR environments. This paper proposes an improved Pure Pursuit algorithm so that the AGV can predict the trajectory and decelerate for turning, thus increasing the accuracy of the path tracking. To solve the kidnapped-robot problem, we use a learning-based classifier to detect the repetitive pattern scenario (e.g., long corridor) regarding 2D LiDAR features for switching the localization system between Simultaneous Localization And Mapping (SLAM) method and Odometer method. As experimental results in practice, the improved Pure Pursuit algorithm can reduce the tracking error while performing more efficiently. Moreover, the learning-based localization selection strategy helps the robot navigation task achieve stable performance, with 36.25% in completion rate more than only using SLAM. The results demonstrate that the proposed method is feasible and reliable in actual conditions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


Author(s):  
Zewen Xu ◽  
Zheng Rong ◽  
Yihong Wu

AbstractIn recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.


2020 ◽  
Vol 1682 ◽  
pp. 012049
Author(s):  
Jianjie Zhenga ◽  
Haitao Zhang ◽  
Kai Tang ◽  
Weidi Kong

2021 ◽  
Vol 13 (12) ◽  
pp. 2351
Author(s):  
Alessandro Torresani ◽  
Fabio Menna ◽  
Roberto Battisti ◽  
Fabio Remondino

Mobile and handheld mapping systems are becoming widely used nowadays as fast and cost-effective data acquisition systems for 3D reconstruction purposes. While most of the research and commercial systems are based on active sensors, solutions employing only cameras and photogrammetry are attracting more and more interest due to their significantly minor costs, size and power consumption. In this work we propose an ARM-based, low-cost and lightweight stereo vision mobile mapping system based on a Visual Simultaneous Localization And Mapping (V-SLAM) algorithm. The prototype system, named GuPho (Guided Photogrammetric System) also integrates an in-house guidance system which enables optimized image acquisitions, robust management of the cameras and feedback on positioning and acquisition speed. The presented results show the effectiveness of the developed prototype in mapping large scenarios, enabling motion blur prevention, robust camera exposure control and achieving accurate 3D results.


Sign in / Sign up

Export Citation Format

Share Document