An Equivalent Definition of Rough Sets

Author(s):  
Guilong Liu ◽  
James Kuodo Huang
2020 ◽  
Vol 70 (6) ◽  
pp. 1349-1356
Author(s):  
Aleksandra Karasińska

AbstractWe consider properties of defined earlier families of sets which are microscopic (small) in some sense. An equivalent definition of considered families is given, which is helpful in simplifying a proof of the fact that each Lebesgue null set belongs to one of these families. It is shown that families of sets microscopic in more general sense have properties analogous to the properties of the σ-ideal of classic microscopic sets.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 462 ◽  
Author(s):  
Jingqian Wang ◽  
Xiaohong Zhang

Intuitionistic fuzzy rough sets are constructed by combining intuitionistic fuzzy sets with rough sets. Recently, Huang et al. proposed the definition of an intuitionistic fuzzy (IF) β -covering and an IF covering rough set model. In this paper, some properties of IF β -covering approximation spaces and the IF covering rough set model are investigated further. Moreover, we present a novel methodology to the problem of multiple criteria group decision making. Firstly, some new notions and properties of IF β -covering approximation spaces are proposed. Secondly, we study the characterizations of Huang et al.’s IF covering rough set model and present a new IF covering rough set model for crisp sets in an IF environment. The relationships between these two IF covering rough set models and some other rough set models are investigated. Finally, based on the IF covering rough set model, Huang et al. also defined an optimistic multi-granulation IF rough set model. We present a novel method to multiple criteria group decision making problems under the optimistic multi-granulation IF rough set model.


Author(s):  
Honglin Zou ◽  
Jianlong Chen ◽  
Huihui Zhu ◽  
Yujie Wei

Recently, a new type of generalized inverse called the [Formula: see text]-strong Drazin inverse was introduced by Mosić in the setting of rings. Namely, let [Formula: see text] be a ring and [Formula: see text] be a positive integer, an element [Formula: see text] is called the [Formula: see text]-strong Drazin inverse of [Formula: see text] if it satisfies [Formula: see text], [Formula: see text] and [Formula: see text]. The main aim of this paper is to consider some equivalent characterizations for the [Formula: see text]-strong Drazin invertibility in a ring. Firstly, we give an equivalent definition of the [Formula: see text]-strong Drazin inverse, that is, [Formula: see text] is the [Formula: see text]-strong Drazin inverse of [Formula: see text] if and only if [Formula: see text], [Formula: see text] and [Formula: see text]. Also, we obtain some existence criteria for this inverse by means of idempotents. In particular, the [Formula: see text]-strong Drazin invertibility of the product [Formula: see text] are investigated, where [Formula: see text] is regular and [Formula: see text] are arbitrary elements in a ring.


Author(s):  
Yong Guo ◽  
Bing-Zhao Li

It is well known that the domain of Fourier transform (FT) can be extended to the Schwartz space [Formula: see text] for convenience. As a generation of FT, it is necessary to detect the linear canonical transform (LCT) on a new space for obtaining the similar properties like FT on [Formula: see text]. Therefore, a space [Formula: see text] generalized from [Formula: see text] is introduced firstly, and further we prove that LCT is a homeomorphism from [Formula: see text] onto itself. The linear canonical wavelet transform (LCWT) is a newly proposed transform based on the convolution theorem in LCT domain. Moreover, we propose an equivalent definition of LCWT associated with LCT and further study some properties of LCWT on [Formula: see text]. Based on these properties, we finally prove that LCWT is a linear continuous operator on the spaces of [Formula: see text] and [Formula: see text].


2012 ◽  
Vol 22 (12) ◽  
pp. 1230043 ◽  
Author(s):  
GORAN RADUNOVIĆ ◽  
DARKO ŽUBRINIĆ ◽  
VESNA ŽUPANOVIĆ

Using geometric inversion with respect to the origin, we extend the definition of box dimension to the case of unbounded subsets of Euclidean spaces. Alternative but equivalent definition is provided using stereographic projection on the Riemann sphere. We study its basic properties, and apply it to the study of the Hopf–Takens bifurcation at infinity.


2011 ◽  
Vol 109 (1) ◽  
pp. 71
Author(s):  
Alexander Pavlov ◽  
Ulrich Pennig ◽  
Thomas Schick

Quasi-multipliers for a Hilbert $C^*$-bimodule $V$ were introduced by L. G. Brown, J. A. Mingo, and N.-T. Shen [3] as a certain subset of the Banach bidual module $V^{**}$. We give another (equivalent) definition of quasi-multipliers for Hilbert $C^*$-bimodules using the centralizer approach and then show that quasi-multipliers are, in fact, universal (maximal) objects of a certain category. We also introduce quasi-multipliers for bimodules in Kasparov's sense and even for Banach bimodules over $C^*$-algebras, provided these $C^*$-algebras act non-degenerately. A topological picture of quasi-multipliers via the quasi-strict topology is given. Finally, we describe quasi-multipliers in two main situations: for the standard Hilbert bimodule $l_2(A)$ and for bimodules of sections of Hilbert $C^*$-bimodule bundles over locally compact spaces.


Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050039
Author(s):  
HAIPENG CHEN ◽  
MIN WU ◽  
YUANYANG CHANG

In this paper, we are concerned with the relationship among the lower Assouad-type dimensions. For uniformly perfect sets in doubling metric spaces, we obtain a variational result between two different but closely related lower Assouad spectra. As an application, we show that the limit of the lower Assouad spectrum as [Formula: see text] tends to 1 is equal to the quasi-lower Assouad dimension, which provides an equivalent definition to the latter. On the other hand, although the limit of the lower Assouad spectrum as [Formula: see text] tends to 0 exists, there exist uniformly perfect sets such that this limit is not equal to the lower box-counting dimension. Moreover, by the example of Cantor cut-out sets, we show that the new definition of quasi-lower Assouad dimension is more accessible, and indicate that the lower Assouad dimension could be strictly smaller than the lower spectra and the quasi-lower Assouad dimension.


Sign in / Sign up

Export Citation Format

Share Document