The effects of the exercise on reactive oxygen species and redox system in rats

Author(s):  
K. Endo ◽  
H. Asahara ◽  
S. Mochizuki ◽  
S. Mohri ◽  
K. Tsujioka
2013 ◽  
Vol 288 (38) ◽  
pp. 27456-27468 ◽  
Author(s):  
Jun Lu ◽  
Suman K. Vodnala ◽  
Anna-Lena Gustavsson ◽  
Tomas N. Gustafsson ◽  
Birger Sjöberg ◽  
...  

Trypanosoma brucei is the causing agent of African trypanosomiasis. These parasites possess a unique thiol redox system required for DNA synthesis and defense against oxidative stress. It includes trypanothione and trypanothione reductase (TryR) instead of the thioredoxin and glutaredoxin systems of mammalian hosts. Here, we show that the benzisothiazolone compound ebsulfur (EbS), a sulfur analogue of ebselen, is a potent inhibitor of T. brucei growth with a favorable selectivity index over mammalian cells. EbS inhibited the TryR activity and decreased non-protein thiol levels in cultured parasites. The inhibition of TryR by EbS was irreversible and NADPH-dependent. EbS formed a complex with TryR and caused oxidation and inactivation of the enzyme. EbS was more toxic for T. brucei than for Trypanosoma cruzi, probably due to lower levels of TryR and trypanothione in T. brucei. Furthermore, inhibition of TryR produced high intracellular reactive oxygen species. Hydrogen peroxide, known to be constitutively high in T. brucei, enhanced the EbS inhibition of TryR. The elevation of reactive oxygen species production in parasites caused by EbS induced a programmed cell death. Soluble EbS analogues were synthesized and cured T. brucei brucei infection in mice when used together with nifurtimox. Altogether, EbS and EbS analogues disrupt the trypanothione system, hampering the defense against oxidative stress. Thus, EbS is a promising lead for development of drugs against African trypanosomiasis.


2009 ◽  
Vol 8 (4) ◽  
pp. 540-549 ◽  
Author(s):  
Taisuke Yano ◽  
Emiko Takigami ◽  
Hiroya Yurimoto ◽  
Yasuyoshi Sakai

ABSTRACT The glutathione redox system, including the glutathione biosynthesis and glutathione regeneration reaction, has been found to play a critical role in the yeast Pichia pastoris during growth on methanol, and this regulation was at least partly executed by the transcription factor PpYap1. During adaptation to methanol medium, PpYap1 transiently localized to the nucleus and activated the expression of the glutathione redox system and upregulated glutathione reductase 1 (Glr1). Glr1 activates the regeneration of the reduced form of glutathione (GSH). Depletion of Glr1 caused a severe growth defect on methanol and hypersensitivity to formaldehyde (HCHO), which could be complemented by addition of GSH to the medium. Disruption of the genes for the HCHO-oxidizing enzymes PpFld1 and PpFgh1 caused a comparable phenotype, but disruption of the downstream gene PpFDH1 did not, demonstrating the importance of maintaining intracellular GSH levels. Absence of the peroxisomal glutathione peroxidase Pmp20 also triggered nuclear localization of PpYap1, and although cells were not sensitive to HCHO, growth on methanol was again severely impaired due to oxidative stress. Thus, the PpYap1-regulated glutathione redox system has two important roles, i.e., HCHO metabolism and detoxification of reactive oxygen species.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 441 ◽  
Author(s):  
Ema Valentina Brovč ◽  
Stane Pajk ◽  
Roman Šink ◽  
Janez Mravljak

Proteins are prone to post-translational modifications at specific sites, which can affect their physicochemical properties, and consequently also their safety and efficacy. Sources of post-translational modifications include oxygen and reactive oxygen species. Additionally, catalytic amounts of Fe(II) or Cu(I) can promote increased activities of reactive oxygen species, and thus catalyse the production of particularly reactive hydroxyl radicals. When oxidative post-translational modifications are detected in the biopharmaceutical industry, it is common practice to add chelators to the formulation. However, the resultant complexes with metals can be even more damaging. Indeed, this is supported here using an ascorbate redox system assay and peptide mapping. Ethylenediaminetetraacetic acid (EDTA) addition strongly accelerated the formation of hydroxyl radicals in an iron-ascorbate system, while diethylenetriaminepentaacetic acid (DTPA) addition did not. When Fe(III) was substituted with Cu(II), EDTA addition almost stopped hydroxyl radical production, whereas DTPA addition showed continued production, but at a reduced rate. Further, EDTA accelerated metal-catalysed oxidation of proteins, and thus did not protect them from Fe-mediated oxidative damage. As every formulation is unique, justification for EDTA or DTPA addition should be based on experimental data and not common practice.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document