Data-Driven On-Line Generation of Interactive Gait Motion

Author(s):  
Liang Zhang ◽  
Stephan Rusdorf ◽  
Guido Brunnett
Keyword(s):  
On Line ◽  
Author(s):  
Zhimin Xi ◽  
Rong Jing ◽  
Pingfeng Wang ◽  
Chao Hu

This paper develops a Copula-based sampling method for data-driven prognostics and health management (PHM). The principal idea is to first build statistical relationship between failure time and the time realizations at specified degradation levels on the basis of off-line training data sets, then identify possible failure times for on-line testing units based on the constructed statistical model and available on-line testing data. Specifically, three technical components are proposed to implement the methodology. First of all, a generic health index system is proposed to represent the health degradation of engineering systems. Next, a Copula-based modeling is proposed to build statistical relationship between failure time and the time realizations at specified degradation levels. Finally, a sampling approach is proposed to estimate the failure time and remaining useful life (RUL) of on-line testing units. Two case studies, including a bearing system in electric cooling fans and a 2008 IEEE PHM challenge problem, are employed to demonstrate the effectiveness of the proposed methodology.


2021 ◽  
Author(s):  
Yong Gui ◽  
Sheng Leng ◽  
Zhiqiang Dai ◽  
Jiyuan Wu
Keyword(s):  
Big Data ◽  

2015 ◽  
Vol 48 (6) ◽  
pp. 311-316 ◽  
Author(s):  
Edson F.A. Rezende ◽  
Alex F. Teixeira ◽  
Eduardo M.A.M. Mendes
Keyword(s):  

2021 ◽  
Vol 9 (4) ◽  
pp. 897-909
Author(s):  
Yanbo Chen ◽  
Hao Chen ◽  
Yang Jiao ◽  
Jin Ma ◽  
Yuzhang Lin
Keyword(s):  

2021 ◽  
Vol 551 ◽  
pp. 113-127
Author(s):  
Yanwei Zhai ◽  
Zheng Lv ◽  
Jun Zhao ◽  
Wei Wang ◽  
Henry Leung
Keyword(s):  

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1350 ◽  
Author(s):  
Chen ◽  
Wu ◽  
Wu ◽  
Xiong ◽  
Han ◽  
...  

The unmanned aerial vehicle (UAV), which is a typical multi-sensor closed-loop flight control system, has the properties of multivariable, time-varying, strong coupling, and nonlinearity. Therefore, it is very difficult to obtain an accurate mathematical diagnostic model based on the traditional model-based method; this paper proposes a UAV sensor diagnostic method based on data-driven methods, which greatly improves the reliability of the rotor UAV nonlinear flight control system and achieves early warning. In order to realize the rapid on-line fault detection of the rotor UAV flight system and solve the problems of over-fitting, limited generalization, and long training time in the traditional shallow neural network for sensor fault diagnosis, a comprehensive fault diagnosis method based on deep belief network (DBN) is proposed. Using the DBN to replace the shallow neural network, a large amount of off-line historical sample data obtained from the rotor UAV are trained to obtain the optimal DBN network parameters and complete the on-line intelligent diagnosis to achieve the goal of early warning as possible as quickly. In the end, the two common faults of the UAV sensor, namely the stuck fault and the constant deviation fault, are simulated and compared with the back propagation (BP) neural network model represented by the shallow neural network to verify the effectiveness of the proposed method in the paper.


Sign in / Sign up

Export Citation Format

Share Document