Micro Systems for the Mechanical Characterization of Isolated Biological Cells: State-of-the-Art

Author(s):  
Denis Desmaële ◽  
Mehdi Boukallel ◽  
Stéphane Régnier
2004 ◽  
Vol 127 (4) ◽  
pp. 530-536 ◽  
Author(s):  
K. M. B. Jansen ◽  
V. Gonda ◽  
L. J. Ernst ◽  
H. J. L. Bressers ◽  
G. Q. Zhang

In microelectronic industry, thin polymer layers are one of the more commonly used product constituents. Examples are glue layers, coatings, and dielectric layers. The thicknesses of these films vary from a few tens of nanometers to over a hundred micrometers. Since at film thicknesses below 100nm the thermal and mechanical properties start to deviate from those in the bulk, adequate characterization techniques are required. In the present paper we will report the results of an extensive literature search on the state-of-the-art of thermo-mechanical thin film characterization methods, such as the substrate curvature test, nanoindentation technique, bulge test, and impulsive stimulated thermal scattering.


Author(s):  
R. Agrawal ◽  
H. D. Espinosa

In this article we review recent advances in experimental techniques for the mechanical characterization of materials and structures at various length scales with an emphasis in the submicron- and nanoregime. Advantages and disadvantages of various approaches are discussed to highlight the need for carefully designed experiments and rigorous analysis of experimentally obtained data to yield unambiguous findings. By examining in depth a few case studies we demonstrate that the development of robust and innovative experimentation is crucial for the advancement of theoretical frameworks, assessment of model predictive capabilities, and discovery of new physical phenomena.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Author(s):  
Alexandre Luiz Pereira ◽  
Rafael Oliveira Santos ◽  
DOINA BANEA ◽  
Álisson Lemos

Sign in / Sign up

Export Citation Format

Share Document