Investigation of Polymer Melt Impregnated Fibre Tapes in Injection Moulding Process

Author(s):  
Jürgen Tröltzsch ◽  
Lothar Kroll
2008 ◽  
Vol 587-588 ◽  
pp. 716-720 ◽  
Author(s):  
A.S. Yanev ◽  
Gustavo R. Dias ◽  
António M. Cunha

A special tool-transparent mould designed to visualize the melt flow inside the cavity is used in this research. The aim of the work is to assess the polymer melt behavior under different processing conditions-close to industrial, in conventional and two materials non-conventional injection moulding techniques. The mould is designed with two injection locations and has possibility to change the geometry of the cavity in order to investigate the melt behavior in differently shaped cavities. Visual access in the mould is allowed by the sapphire windows, surrounding the cavity. For image acquisition a high speed video camera NAC 1000 is used. Materials used in the research are three polypropylenes with different flow index. Results are obtained for conventional injection moulding, two material monosandwich and two material biinjection moulding. Apart from visualization, instrumentation of the mould allows to be obtained PT data for each processing condition. Results from conventional injection moulding are compared with MPI5.0 simulations.


Author(s):  
N Khoshooee ◽  
P D Coates

The consistency of polymer melt production in the injection-moulding process has been studied using a Taguchi design-of-experiment method for acrylonitrile butadiene styrene (ABS) and high-density polyethylene. Systematic experimentation with injection-moulding machine settings helped to establish both qualitative and quantitative process understanding in attempting to control the melt quality, assessed here by the shot weight variability. Optimum machine settings were determined which gave the lowest variations in the shot weight. In the case of ABS, uncontrollable influences (noise factors; here the injection stroke and moisture content) were incorporated in the study in such a way that the optimum levels recommended by the analysis make the process (i.e. shot weight) insensitive to variations caused by the noise factors. The set melt temperature and screw-back pressure were observed to be the most influential control factors affecting the shot weight variability for both polymers.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5193
Author(s):  
Mandana Kariminejad ◽  
David Tormey ◽  
Saif Huq ◽  
Jim Morrison ◽  
Marion McAfee

Injection moulding is an extremely important industrial process, being one of the most commonly-used plastic formation techniques. However, the industry faces many current challenges associated with demands for greater product customisation, higher precision and, most urgently, a shift towards more sustainable materials and processing. Accurate real-time sensing of the material and part properties during processing is key to achieving rapid process optimisation and set-up, reducing down-times, and reducing waste material and energy in the production of defective products. While most commercial processes rely on point measurements of pressure and temperature, ultrasound transducers represent a non-invasive and non-destructive source of rich information on the mould, the cavity and the polymer melt, and its morphology, which affect critical quality parameters such as shrinkage and warpage. In this paper the relationship between polymer properties and the propagation of ultrasonic waves is described and the application of ultrasound measurements in injection moulding is evaluated. The principles and operation of both conventional and high temperature ultrasound transducers (HTUTs) are reviewed together with their impact on improving the efficiency of the injection moulding process. The benefits and challenges associated with the recent development of sol-gel methods for HTUT fabrication are described together with a synopsis of further research and development needed to ensure a greater industrial uptake of ultrasonic sensing in injection moulding.


2013 ◽  
Vol 747 ◽  
pp. 571-574 ◽  
Author(s):  
Zulkifli Mohamad Ariff ◽  
T.H. Khang

The possibility of using Cadmould software to simulate the filling behaviour of a natural rubber compound during an injection moulding process was investigated. For the simulation process, the determination of required material input data involving the rheological and cure kinetics data of the designed rubber compound were conducted. It was discovered that the acquired data were able to function as reliable material input data as they were comparable with related data available in the Cadmould software materials database. Verification of the simulated filling profiles by experimental short shots specimens showed that the Cadmould Rubber Package was able to predict the realistic filling behaviour of the formulated natural rubber compound inside the mould cavity when the measured material data were utilized. Whereas, the usage of available material database from the software failed to model the mould filling progression of the intended natural rubber compound.


2013 ◽  
Vol 554-557 ◽  
pp. 1669-1682 ◽  
Author(s):  
Kam Hoe Yin ◽  
Hui Leng Choo ◽  
Dunant Halim ◽  
Chris Rudd

Process parameters optimisation has been identified as a potential approach to realise a greener injection moulding process. However, reduction in the process energy consumption does not necessarily imply a good part quality. An effective multi-response optimisation process can be demanding and often relies on extensive operational experience from human operators. Therefore, this research focuses on an attempt to develop a more user-friendly approach which could simultaneously deal with the requirements of energy efficiency and part quality. This research proposes a novel approach using a dynamic Shainin Design of Experiment (DOE) methodology to determine an optimal combination of process parameters used in the injection moulding process. The Shainin DOE method is adopted to pinpoint the most important factors on energy consumption and the targeted part quality whereas the ‘dynamic’ term refers to the signal-response system. The effectiveness of the proposed approach was illustrated by investigating the influence of various dominant parameters on the specific energy consumption (SEC) and the Charpy impact strength (CIS) of polypropylene (PP) material after being injection-moulded into impact test specimens. From the experimental results, barrel temperature was identified as the signal factor while mould temperature and cooling time were used as control factors in the full factorial experiments. Then, response function modelling (RFM) was built to characterise the signal-response relationship as a function of the control factors. Finally, RFM led to a trade-off solution where reducing part-to-part variation for CIS resulted in an increase of SEC. Therefore, the research outcomes have demonstrated that the proposed methodology can be practically applied at the factory shop floor to achieve different performance output targets specified by the customer or the manufacturer’s intent.


2011 ◽  
Author(s):  
Nong Gu. ◽  
Dougas Creighton ◽  
Saeid Nahavandi ◽  
Francisco Chinesta ◽  
Yvan Chastel ◽  
...  

Author(s):  
Thuy Linh Pham ◽  
Jean Balcaen ◽  
Sambor Chhay ◽  
Yves Bereaux ◽  
Jean-Yves Charmeau

In injection moulding or in extrusion, plastication is the step during which polymer pellets are melted by the means of mechanical dissipation provided by a rotating screw and by thermal conduction coming from a heated metallic barrel. This step is crucial for melt thermal homogeneity, charge dispersion and fibre length preservation. Although there have been a large number of theoretical and experimental studies of plastication during the past decades, mostly on extrusion and mostly using the screw extraction technique, extremely few of them have dealt with trying to visualise plastication, let alone measuring the plastication profile in real-time. As a matter of fact, designing such an equipment is an arduous task. We designed an industry-sized metallic barrel, featuring 3 optical glass windows; each window possessing 3 plane faces itself to allow for visualisation and record by synchronised cameras and lightening by lasers. The images recorded can be further analysed by digital image processing. Preliminary results confirm the plastication theory and show a compacted solid bed and a melt pool side by side. The total plastication length is a direct function of screw rotation frequency as it is obvious from results on the melt pool width, which increases when the screw rotation frequency decreases. However, some evidence of solid bed breakage has been recorded, whereby the solid bed does not diminish continuously along the screw but is fractured in the compression zone.


Sign in / Sign up

Export Citation Format

Share Document