scholarly journals Study on Delineation of Irrigation Management Zones Based on Management Zone Analyst Software

Author(s):  
Qiuxiang Jiang ◽  
Qiang Fu ◽  
Zilong Wang
2016 ◽  
Vol 51 (9) ◽  
pp. 1283-1294 ◽  
Author(s):  
Henrique Oldoni ◽  
Luís Henrique Bassoi

Abstract The objective of this work was to delineate irrigation management zones using geostatistics and multivariate analysis in different combinations of physical and hydraulic soil properties, as well as to determine the optimal number of management zones in order to avoid overlaping. A field experiment was carried out in a Quartzipsamment, for two years, in an irrigated orchard of table grape, in the Senador Nilo Coelho Irrigation Scheme, in the municipality of Petrolina, in the state of Pernanbuco, Brazil. Soil samples were collected for the determination of soil physico-hydraulic properties. A portable meter was used to measure soil apparent electrical conductivity. Spatial distribution maps were generated using ordinary kriging. Management zones for five different combinations of soil properties were defined using the fuzzy c-means clustering algorithm, and two indexes were applied to determine the optimal number of management zones. Two combinations of soil properties can be used in the management zone planning in order to monitor soil moisture.


2020 ◽  
Vol 3 (1) ◽  
pp. 106
Author(s):  
Yevhen Melnyk ◽  
Vladimir Voron

Preservation and increase of forest area are necessary conditions for the biosphere functioning. Forest ecosystems in most parts of the world are affected by fires. According to the latest data, the forest fire situation has become complicated in Ukraine, and this issue requires ongoing investigation. The aim of the study was to analyse the dynamics of wildfires in Ukrainian forests over recent decades and to assess the complex indicator of wildfire occurrence in various forest management zones and administrative regions. The average annual complex indicator of fire occurrence, in terms of wildfire number and burned area, was studied in detail in the forests of various administrative regions and forest management zones in Ukraine from 1998 to 2017. The results show that fire occurrence in both the number and area of fires can vary significantly in various forest management zones. There is a very noticeable difference in these indicators in some administrative regions within a particular forest management zone. The data show that the number of forest fires depends not only on the natural and climatic conditions of such regions, but also on anthropogenic factors.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 286 ◽  
Author(s):  
Guillaume Létourneau ◽  
Jean Caron

Improvements in water productivity are of primary importance for maintaining agricultural productivity and sustainability. Water potential-based irrigation management has proven effective for this purpose with many different crops, including strawberries. However, problems related to spatial variability of soil properties and irrigation efficiency were reported when applying this management method to strawberries in soils with rock fragments. In this study, a field-scale experiment was performed to evaluate the impacts of three irrigation management scales and a pulsed water application method on strawberry yield and water productivity. An analytical solution to Richards’ equation was also used to establish critical soil water potentials for this crop and evaluate the effects of the variability in the soil properties. Results showed that spatial variability of soil properties at the experimental site was important but not enough to influence crop response to irrigation practices. The studied properties did not present any spatial structure that could allow establishing specific management zones. A four-fold reduction in the size of the irrigation management zones had no effect on yield and increased the water applications. Pulsed application led to significant yield (22%) and water productivity (36%) increases compared with the standard water application method used by the producer at the experimental site.


2003 ◽  
Vol 20 (2) ◽  
pp. 79-84 ◽  
Author(s):  
Brian Palik ◽  
Kory Cease ◽  
Leanne Egeland ◽  
Charles Blinn

Abstract We examined aspen regeneration under different riparian management zone (RMZ) treatments in aspen forests in northern Minnesota. We also compared aspen regeneration in partially harvested RMZs to adjacent upland clearcuts. The four RMZ treatments included: (1) full control (no cutting in RMZ or upland; (2) riparian control (RMZ uncut; upland clearcut); and partially harvested RMZs cut to 54 ft2/ac, with upland clearcut using (3) cut-to-length (CTL), or (4) tree-length harvesting. Three years after harvest, aspen sucker densities in the tree-length and CTL treatments were significantly higher than the full control, but did not differ from each other or the riparian control. Mean individual sucker heights (63–73 in) and aboveground biomass (2.4–3.4 oz) varied among the riparian treatments, but not significantly. Sucker densities were 62% higher in the adjacent clearcuts than in the partially harvested RMZs. Mean suckers heights did not differ between the two locations (71 in.), but aboveground biomass of suckers did differ significantly, averaging 3.4 oz in the partially harvested RMZs and 4.5 oz in the clearcuts. Our results indicate that 60% removal of basal area within RMZs increases density and size of aspen regeneration significantly, compared to uncut forest, but stocking is still below what is considered adequate for 3-yr-old stands. Suckering responses were similar with cut-to-length and tree-length harvesting, suggesting that harvest system has little effect on sucker development. While aspen likely will be a component of partially harvested RMZs, density and biomass increment will be much lower than in single-cohort stands and lower than what is considered desirable for commercial production. North. J. Appl. For. 20(2):79–84.


2015 ◽  
Vol 35 (6) ◽  
pp. 1160-1171
Author(s):  
Luciano Gebler ◽  
Celia R. Grego ◽  
Abel L. Vieira ◽  
Leonardo da R. Kuse

ABSTRACT Precision agriculture adoption in Brazilian apple orchards is still incipient. This study aimed at evaluating the spatial variability of certain soil properties as soil density, soil penetration resistance, electrical conductivity, yield, and fruit quality in an apple orchard through digital mapping, as well as assessing the correlation between these factors by means of geostatistics, establishing management zones. Forty representative points were set within 2.5 hectares of apple orchard, wherein soil samples were collected and analyzed, besides measurements of fruit quality (Brix degree, size or diameter, pulp firmness and color) to generate an overall index quality. We concluded that the fruit quality indexes, when isolated, did not show strong spatial dependence, unlike the index of fruit quality (FQI), derived from a combination of these parameters, allowing orchard planning according to management zones based on quality.


2015 ◽  
Vol 154 (2) ◽  
pp. 273-286 ◽  
Author(s):  
H. U. FARID ◽  
A. BAKHSH ◽  
N. AHMAD ◽  
A. AHMAD ◽  
Z. MAHMOOD-KHAN

SUMMARYDelineating site-specific management zones within fields can be helpful in addressing spatial variability effects for adopting precision farming practices. A 3-year (2008/09 to 2010/11) field study was conducted at the Postgraduate Agricultural Research Station, University of Agriculture, Faisalabad, Pakistan, to identify the most important soil and landscape attributes influencing wheat grain yield, which can be used for delineating management zones. A total of 48 soil samples were collected from the top 300 mm of soil in 8-ha experimental field divided into regular grids of 24 × 67 m prior to sowing wheat. Soil and landscape attributes such as elevation, % of sand, silt and clay by volume, soil electrical conductivity (EC), pH, soil nitrogen (N) and soil phosphorus (P) were included in the analysis. Artificial neural network (ANN) analysis showed that % sand, % clay, elevation, soil N and soil EC were important variables for delineating management zones. Different management zone schemes ranging from three to six were developed and evaluated based on performance indicators using Management Zone Analyst (MZA V0·1) software. The fuzziness performance index (FPI) and normalized classification entropy NCE indices showed minimum values for a four management zone scheme, indicating its appropriateness for the experimental field. The coefficient of variation values of soil and landscape attributes decreased for each management zone within the four management zone scheme compared to the entire field, which showed improved homogeneity. The evaluation of the four management zone scheme using normalized wheat grain yield data showed distinct means for each management zone, verifying spatial variability effects and the need for its management. The results indicated that the approach based on ANN and MZA software analysis can be helpful in delineating management zones within the field, to promote precision farming practices effectively.


2018 ◽  
Vol 11 (1) ◽  
pp. 98 ◽  
Author(s):  
Vasco Chiteculo ◽  
Azadeh Abdollahnejad ◽  
Dimitrios Panagiotidis ◽  
Peter Surový ◽  
Ram Sharma

A few studies have recently been published on changes in land use/land cover (LU/LC) of Angolan Miombo forests, however, none have attempted to offer forest management solutions for degraded Miombo forests. Landscapes are witness to past and present natural and social processes influencing the environment, where each period in the past leaves footprints on the landscape’s development, which can be described by a continual decrease in forest area over time. The expansion of degraded areas from 2000 to 20017 began near urban areas where many Miombo forests have been eliminated or highly degraded, particularly in the southwest and northeast of the Huambo province. Large areas of degraded forests were observed along the Benguela railway (Caminho de ferro de Benguela). Our detailed analysis of the landcover map suggests that the impact has been devastating and there is no form of forest protection, which leads to unregulated exploitation. Descriptions of the Miombo forest dynamics are explained using height–diameter curves developed for different vegetation types that provide important insights about forest structures in the management zones. The height–diameter models differed for all vegetation types, and four management zones (MZ) were created based on a set of particular attributes. The vegetation types differed in each management zone, which included agricultural land and bare soil (MZ–E), grassland or savanna (MZ–C), open Miombo forests (MZ–B), and closed Miombo forests (Miombo forests). The four management zones were easily identified on the available maps and the height–diameter models developed represent a fundamental tool for future studies on forest planning.


2019 ◽  
Vol 35 (6) ◽  
pp. 881-888
Author(s):  
Kenneth C Stone ◽  
Philip J Bauer ◽  
Gilbert C Sigua

Abstract. Site-specific variable-rate irrigation (VRI) systems can be used to spatially manage irrigation within sub-field-sized zones and optimize spatial water use efficiency. The goal of the research is to provide farmers and consultants a tool to evaluate the potential benefits of implementing VRI. The specific objective of this research is to evaluate the potential water savings using VRI management compared with uniform irrigation management to maintain soil water holding capacity above 50% depletion using two irrigation scenarios: 1) a standard 12.5 mm irrigation per application; and 2) an application to refill the soil profile to field capacity. A 21-year simulation study was carried out on a selected field with varying degrees of soil and topographic variability. The simulated field had 12 soil mapping units with water holding capacities in the top 0.30-m ranging from 42 to 70 mm. The 21-year simulation covering all weather conditions for each soil produced only two significantly different irrigation management zones for scenario 1, and for scenario 2 only one management zone. However, when the 21-year period was divided into periods with different ratios of rainfall to reference evapotranspiration, the simulations identified 1 to 5 management zones with significantly different irrigation requirements. These results indicate that variable rate irrigation system design and management should not be solely based on long term average weather conditions. Years with differing weather conditions should be used for potentially identifying management zones for VRI systems. Irrigation application depths between management zones ranged from 17 to 38 mm. However, when the actual soil areas of the study field were utilized to calculate the total volume of irrigation water applied, it resulted in an increase in water usage in the 2 and 4 management zones ranging from -1.2% to 5.8%. Water usage with VRI over uniform irrigation was greater by -1.6% to 6.8% in the 12.5 mm irrigations and by -1.2% to 2.2% for the field capacity irrigations Keywords: Management zones, Precision farming, Variable-rate irrigation, Water conservation.


2019 ◽  
pp. 223-230
Author(s):  
John J. Drewry ◽  
Carolyn B. Hedley ◽  
Jagath Ekanayake

This paper presents a case-study approach focussing on variability of soils, soil physical properties, and how the use of proximal sensor surveys and soil moisture monitoring can be used to improve irrigation management at fine spatial scales (<10 m). Proximal sensor survey data have been used to map soil variability and statistically derive management zones, which are then correlated with S-map siblings using soil moisture release curves. At the first case study site, soil moisture monitoring of these management zones showed the poorly drained soil had wetter conditions than the other zones, which is likely to have been a factor contributing to reduced barley yield. Less irrigation could therefore have been applied to the poorly drained soil, with a saving in cost and yield penalty. In the second case study, we provide an overview of research focussing on practical applications of near real-time soil moisture monitoring and visualisation through smart phone apps, enabling new irrigation software and hardware to be matched to specific farm circumstances, so soils and crops can be managed to reduce water and nutrient losses.


Sign in / Sign up

Export Citation Format

Share Document