Model-based optimal delineation of drip irrigation management zones

2020 ◽  
Vol 22 (1) ◽  
pp. 287-305
Author(s):  
Raphael Linker
2018 ◽  
Vol 35 (2) ◽  
pp. 469-484
Author(s):  
Nora Husein ◽  
Mohamed El-Ansary ◽  
Montaser Awad ◽  
Harby Mostafa

2018 ◽  
Vol 121 ◽  
pp. 35-43 ◽  
Author(s):  
Harby Mostafa ◽  
Reham El-Nady ◽  
Montaser Awad ◽  
Mohamed El-Ansary

2013 ◽  
Vol 33 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Alberto Colombo ◽  
Lívia A. Alvarenga ◽  
Myriane S. Scalco ◽  
Randal C. Ribeiro ◽  
Giselle F. Abreu

The increasing demand for water resources accentuates the need to reduce water waste through a more appropriate irrigation management. In the particular case of irrigated coffee planting, which in recent years presented growth with the predominance of drip irrigation, the improvement of drip irrigation management techniques is a necessity. The proper management of drip irrigation depends on the knowledge of the spatial pattern of soil moisture distribution inside the wetted strip formed under the irrigation lines. In this study, grids of 24 tensiometers were used to determine the water storage within the wetted strip formed under drippers, with a 3.78 L h-1 discharge, evenly spaced by 0.4 m, subjected to two different management criteria (fixed irrigation interval and 60 kPa tension). Estimates of storage based on a one-dimensional analysis, that only considers depth variations, were compared with two-dimensional estimates. The results indicate that for high-frequency irrigation the one-dimensional analysis is not appropriate. However, under less frequent irrigation, the two-dimensional analysis is dispensable, being the one-dimensional sufficient for calculating the water volume stored in the wetted strip.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 286 ◽  
Author(s):  
Guillaume Létourneau ◽  
Jean Caron

Improvements in water productivity are of primary importance for maintaining agricultural productivity and sustainability. Water potential-based irrigation management has proven effective for this purpose with many different crops, including strawberries. However, problems related to spatial variability of soil properties and irrigation efficiency were reported when applying this management method to strawberries in soils with rock fragments. In this study, a field-scale experiment was performed to evaluate the impacts of three irrigation management scales and a pulsed water application method on strawberry yield and water productivity. An analytical solution to Richards’ equation was also used to establish critical soil water potentials for this crop and evaluate the effects of the variability in the soil properties. Results showed that spatial variability of soil properties at the experimental site was important but not enough to influence crop response to irrigation practices. The studied properties did not present any spatial structure that could allow establishing specific management zones. A four-fold reduction in the size of the irrigation management zones had no effect on yield and increased the water applications. Pulsed application led to significant yield (22%) and water productivity (36%) increases compared with the standard water application method used by the producer at the experimental site.


2016 ◽  
Vol 51 (9) ◽  
pp. 1283-1294 ◽  
Author(s):  
Henrique Oldoni ◽  
Luís Henrique Bassoi

Abstract The objective of this work was to delineate irrigation management zones using geostatistics and multivariate analysis in different combinations of physical and hydraulic soil properties, as well as to determine the optimal number of management zones in order to avoid overlaping. A field experiment was carried out in a Quartzipsamment, for two years, in an irrigated orchard of table grape, in the Senador Nilo Coelho Irrigation Scheme, in the municipality of Petrolina, in the state of Pernanbuco, Brazil. Soil samples were collected for the determination of soil physico-hydraulic properties. A portable meter was used to measure soil apparent electrical conductivity. Spatial distribution maps were generated using ordinary kriging. Management zones for five different combinations of soil properties were defined using the fuzzy c-means clustering algorithm, and two indexes were applied to determine the optimal number of management zones. Two combinations of soil properties can be used in the management zone planning in order to monitor soil moisture.


1996 ◽  
Vol 12 (3) ◽  
pp. 335-340 ◽  
Author(s):  
G. A. Clark ◽  
D. N. Maynard ◽  
C. D. Stanley

Agric ◽  
2017 ◽  
Vol 29 (2) ◽  
pp. 113-120
Author(s):  
Syahruni Thamrin ◽  
Budiman Budiman ◽  
Baso Darwisah ◽  
Junaedi Junaedi

The condition of cotton planting in South Sulawesi is always constrained in the fulfillment of water. All plant growth stages are not optimal to increase production, so it is necessary to introduce good water management technology, such as through water supply with drip irrigation system. This study aims to analyze the strategy of irrigation management in cotton plants using drip irrigation system. Model of application by designing drip irrigation system and cotton planting on land prepared as demonstration plot. Observations were made in the germination phase and the vegetative phase of the early plants. Based on the result of drip irrigation design, the emitter droplet rate (EDR) was 34.266 mm/hour with an operational time of 4.08 min/day. From the observation of cotton growth, it is known that germination time lasted from 6 to 13 days after planting, the average plant height reached 119.66 cm, with the number of leaves averaging 141.93 pieces and the number of bolls averaging 57.16 boll.


EDIS ◽  
2013 ◽  
Vol 2013 (4) ◽  
Author(s):  
Lincoln Zotarelli ◽  
Libby Rens ◽  
Charles Barrett ◽  
Daniel J. Cantliffe ◽  
Michael D. Dukes ◽  
...  

In terms of water use efficiency, the traditional seepage irrigation systems commonly used in areas with high water tables are one of the most inefficient methods of irrigation, though some irrigation management practices can contribute to better soil moisture uniformity. Subsurface drip irrigation systems apply water below the soil surface by microirrigation, improving the water distribution and time required to raise the water table for seepage irrigation. This 6-page fact sheet was written by Lincoln Zotarelli, Libby Rens, Charles Barrett, Daniel J. Cantliffe, Michael D. Dukes, Mark Clark, and Steven Lands, and published by the UF Department of Horticultural Sciences, March 2013. http://edis.ifas.ufl.edu/hs1217


Sign in / Sign up

Export Citation Format

Share Document