A Cultural Belief Network Simulator

Author(s):  
Winston R. Sieck ◽  
Benjamin G. Simpkins ◽  
Louise J. Rasmussen
2011 ◽  
Vol 3 (6) ◽  
pp. 87-90
Author(s):  
O. H. Abdelwahed O. H. Abdelwahed ◽  
◽  
M. El-Sayed Wahed ◽  
O. Mohamed Eldaken

Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Author(s):  
Istabraq M. Al-Joboury ◽  
Emad H. Al-Hemiary

Fog Computing is a new concept made by Cisco to provide same functionalities of Cloud Computing but near to Things to enhance performance such as reduce delay and response time. Packet loss may occur on single Fog server over a huge number of messages from Things because of several factors like limited bandwidth and capacity of queues in server. In this paper, Internet of Things based Fog-to-Cloud architecture is proposed to solve the problem of packet loss on Fog server using Load Balancing and virtualization. The architecture consists of 5 layers, namely: Things, gateway, Fog, Cloud, and application. Fog layer is virtualized to specified number of Fog servers using Graphical Network Simulator-3 and VirtualBox on local physical server. Server Load Balancing router is configured to distribute the huge traffic in Weighted Round Robin technique using Message Queue Telemetry Transport protocol. Then, maximum message from Fog layer are selected and sent to Cloud layer and the rest of messages are deleted within 1 hour using our proposed Data-in-Motion technique for storage, processing, and monitoring of messages. Thus, improving the performance of the Fog layer for storage and processing of messages, as well as reducing the packet loss to half and increasing throughput to 4 times than using single Fog server.


Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

Background: Real Time Wireless Sensor Networks (RT-WSN) have hard real time packet delivery requirements. Due to resource constraints of sensors, these networks need to trade-off energy and latency. Objective: In this paper, a routing protocol for RT-WSN named “SPREAD” has been proposed. The underlying idea is to reserve laxity by assuming tighter packet deadline than actual. This reserved laxity is used when no deadline-meeting next hop is available. Objective: As a result, if due to repeated transmissions, energy of nodes on shortest path is drained out, then time is still left to route the packet dynamically through other path without missing the deadline. Results: Congestion scenarios have been addressed by dynamically assessing 1-hop delays and avoiding traffic on congested paths. Conclusion: Through extensive simulations in Network Simulator NS2, it has been observed that SPREAD algorithm not only significantly reduces miss ratio as compared to other similar protocols but also keeps energy consumption under control. It also shows more resilience towards high data rate and tight deadlines than existing popular protocols.


2019 ◽  
Vol 28 (5) ◽  
pp. 925-932
Author(s):  
Hua WEI ◽  
Chun SHAN ◽  
Changzhen HU ◽  
Yu ZHANG ◽  
Xiao YU

Sign in / Sign up

Export Citation Format

Share Document