scholarly journals Multiple Scattering: Dispersion, Temperature Dependence, and Annular Pistons

Author(s):  
Kimball A. Milton ◽  
Jef Wagner ◽  
Prachi Parashar ◽  
Inés Cavero-Peláez ◽  
Iver Brevik ◽  
...  
Author(s):  
K. Ramamurti

We have previously reported the results of electron beam-induced mass loss of L-phenylalanine at 7°K (1,2). We are currently in the process of measuring the mass loss as a function of temperature.As reported earlier, we found negligible mass loss at 7°K. Reference 2 discussed in detail the precautions to be taken to ensure that the measurements are meaningful. In the current series of measurements, the specimen thickness is measured directly as a function of dose rather than measuring the thickness of an irradiated area relative to a reference area. This is done by recording the energy loss spectrum in the range 0-150 Volts with a multichannel analyzer. The number of unscattered and inelastically scattered electrons are found by summing over the respective regions in the spectrum.Corrections have been made to take into account 1) inclusion of a finite range of energy loss in the spectrum; 2) geometric collection efficiency of the aperture in the spectrometer; and 3) effects due to multiple scattering.


Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


Author(s):  
Kenneth H. Downing ◽  
Robert M. Glaeser

The structural damage of molecules irradiated by electrons is generally considered to occur in two steps. The direct result of inelastic scattering events is the disruption of covalent bonds. Following changes in bond structure, movement of the constituent atoms produces permanent distortions of the molecules. Since at least the second step should show a strong temperature dependence, it was to be expected that cooling a specimen should extend its lifetime in the electron beam. This result has been found in a large number of experiments, but the degree to which cooling the specimen enhances its resistance to radiation damage has been found to vary widely with specimen types.


Author(s):  
Sonoko Tsukahara ◽  
Tadami Taoka ◽  
Hisao Nishizawa

The high voltage Lorentz microscopy was successfully used to observe changes with temperature; of domain structures and metallurgical structures in an iron film set on the hot stage combined with a goniometer. The microscope used was the JEM-1000 EM which was operated with the objective lens current cut off to eliminate the magnetic field in the specimen position. Single crystal films with an (001) plane were prepared by the epitaxial growth of evaporated iron on a cleaved (001) plane of a rocksalt substrate. They had a uniform thickness from 1000 to 7000 Å.The figure shows the temperature dependence of magnetic domain structure with its corresponding deflection pattern and metallurgical structure observed in a 4500 Å iron film. In general, with increase of temperature, the straight domain walls decrease in their width (at 400°C), curve in an iregular shape (600°C) and then vanish (790°C). The ripple structures with cross-tie walls are observed below the Curie temperature.


Author(s):  
C P Scott ◽  
A J Craven ◽  
C J Gilmore ◽  
A W Bowen

The normal method of background subtraction in quantitative EELS analysis involves fitting an expression of the form I=AE-r to an energy window preceding the edge of interest; E is energy loss, A and r are fitting parameters. The calculated fit is then extrapolated under the edge, allowing the required signal to be extracted. In the case where the characteristic energy loss is small (E < 100eV), the background does not approximate to this simple form. One cause of this is multiple scattering. Even if the effects of multiple scattering are removed by deconvolution, it is not clear that the background from the recovered single scattering distribution follows this simple form, and, in any case, deconvolution can introduce artefacts.The above difficulties are particularly severe in the case of Al-Li alloys, where the Li K edge at ~52eV overlaps the Al L2,3 edge at ~72eV, and sharp plasmon peaks occur at intervals of ~15eV in the low loss region. An alternative background fitting technique, based on the work of Zanchi et al, has been tested on spectra taken from pure Al films, with a view to extending the analysis to Al-Li alloys.


2002 ◽  
Vol 12 (3) ◽  
pp. 71-74
Author(s):  
J. A. Jiménez Tejada ◽  
A. Godoy ◽  
A. Palma ◽  
P. Cartujo

Sign in / Sign up

Export Citation Format

Share Document