Human Vein Pattern Correlation - A Comparison of Segmentation Methods

Author(s):  
Rafał Kabaciński ◽  
Mateusz Kowalski
2012 ◽  
Vol 3 (2) ◽  
pp. 253-255
Author(s):  
Raman Brar

Image segmentation plays a vital role in several medical imaging programs by assisting the delineation of physiological structures along with other parts. The objective of this research work is to segmentize human lung MRI (Medical resonance Imaging) images for early detection of cancer.Watershed Transform Technique is implemented as the Segmentation method in this work. Some comparative experiments using both directly applied watershed algorithm and after marking foreground and computed background segmentation methods show the improved lung segmentation accuracy in some image cases.


2020 ◽  
Vol 961 (7) ◽  
pp. 47-55
Author(s):  
A.G. Yunusov ◽  
A.J. Jdeed ◽  
N.S. Begliarov ◽  
M.A. Elshewy

Laser scanning is considered as one of the most useful and fast technologies for modelling. On the other hand, the size of scan results can vary from hundreds to several million points. As a result, the large volume of the obtained clouds leads to complication at processing the results and increases the time costs. One way to reduce the volume of a point cloud is segmentation, which reduces the amount of data from several million points to a limited number of segments. In this article, we evaluated effect on the performance, the accuracy of various segmentation methods and the geometric accuracy of the obtained models at density changes taking into account the processing time. The results of our experiment were compared with reference data in a form of comparative analysis. As a conclusion, some recommendations for choosing the best segmentation method were proposed.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jimena Olveres ◽  
Erik Carbajal-Degante ◽  
Boris Escalante-Ramírez ◽  
Enrique Vallejo ◽  
Carla María García-Moreno

Segmentation tasks in medical imaging represent an exhaustive challenge for scientists since the image acquisition nature yields issues that hamper the correct reconstruction and visualization processes. Depending on the specific image modality, we have to consider limitations such as the presence of noise, vanished edges, or high intensity differences, known, in most cases, as inhomogeneities. New algorithms in segmentation are required to provide a better performance. This paper presents a new unified approach to improve traditional segmentation methods as Active Shape Models and Chan-Vese model based on level set. The approach introduces a combination of local analysis implementations with classic segmentation algorithms that incorporates local texture information given by the Hermite transform and Local Binary Patterns. The mixture of both region-based methods and local descriptors highlights relevant regions by considering extra information which is helpful to delimit structures. We performed segmentation experiments on 2D images including midbrain in Magnetic Resonance Imaging and heart’s left ventricle endocardium in Computed Tomography. Quantitative evaluation was obtained with Dice coefficient and Hausdorff distance measures. Results display a substantial advantage over the original methods when we include our characterization schemes. We propose further research validation on different organ structures with promising results.


2020 ◽  
pp. 110208
Author(s):  
Chenglong Feng ◽  
Lizhen Wang ◽  
Peng Xu ◽  
Zhaowei Chu ◽  
Jie Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document