Demosaicking Authentication Codes VIA Adaptive Color Channel Fusion

Author(s):  
Guorui Feng ◽  
Qian Zeng
Author(s):  
Keith M. Martin

This chapter discusses cryptographic mechanisms for providing data integrity. We begin by identifying different levels of data integrity that can be provided. We then look in detail at hash functions, explaining the different security properties that they have, as well as presenting several different applications of a hash function. We then look at hash function design and illustrate this by discussing the hash function SHA-3. Next, we discuss message authentication codes (MACs), presenting a basic model and discussing basic properties. We compare two different MAC constructions, CBC-MAC and HMAC. Finally, we consider different ways of using MACs together with encryption. We focus on authenticated encryption modes, and illustrate these by describing Galois Counter mode.


Author(s):  
Geet Sahu ◽  
Ayan Seal ◽  
Ondrej Krejcar ◽  
Anis Yazidi

2021 ◽  
Vol 7 (7) ◽  
pp. 119
Author(s):  
Marina Gardella ◽  
Pablo Musé ◽  
Jean-Michel Morel ◽  
Miguel Colom

A complex processing chain is applied from the moment a raw image is acquired until the final image is obtained. This process transforms the originally Poisson-distributed noise into a complex noise model. Noise inconsistency analysis is a rich source for forgery detection, as forged regions have likely undergone a different processing pipeline or out-camera processing. We propose a multi-scale approach, which is shown to be suitable for analyzing the highly correlated noise present in JPEG-compressed images. We estimate a noise curve for each image block, in each color channel and at each scale. We then compare each noise curve to its corresponding noise curve obtained from the whole image by counting the percentage of bins of the local noise curve that are below the global one. This procedure yields crucial detection cues since many forgeries create a local noise deficit. Our method is shown to be competitive with the state of the art. It outperforms all other methods when evaluated using the MCC score, or on forged regions large enough and for colorization attacks, regardless of the evaluation metric.


2021 ◽  
Vol 13 (3) ◽  
pp. 455
Author(s):  
Md Nazrul Islam ◽  
Murat Tahtali ◽  
Mark Pickering

Multispectral polarimetric light field imagery (MSPLFI) contains significant information about a transparent object’s distribution over spectra, the inherent properties of its surface and its directional movement, as well as intensity, which all together can distinguish its specular reflection. Due to multispectral polarimetric signatures being limited to an object’s properties, specular pixel detection of a transparent object is a difficult task because the object lacks its own texture. In this work, we propose a two-fold approach for determining the specular reflection detection (SRD) and the specular reflection inpainting (SRI) in a transparent object. Firstly, we capture and decode 18 different transparent objects with specularity signatures obtained using a light field (LF) camera. In addition to our image acquisition system, we place different multispectral filters from visible bands and polarimetric filters at different orientations to capture images from multisensory cues containing MSPLFI features. Then, we propose a change detection algorithm for detecting specular reflected pixels from different spectra. A Mahalanobis distance is calculated based on the mean and the covariance of both polarized and unpolarized images of an object in this connection. Secondly, an inpainting algorithm that captures pixel movements among sub-aperture images of the LF is proposed. In this regard, a distance matrix for all the four connected neighboring pixels is computed from the common pixel intensities of each color channel of both the polarized and the unpolarized images. The most correlated pixel pattern is selected for the task of inpainting for each sub-aperture image. This process is repeated for all the sub-aperture images to calculate the final SRI task. The experimental results demonstrate that the proposed two-fold approach significantly improves the accuracy of detection and the quality of inpainting. Furthermore, the proposed approach also improves the SRD metrics (with mean F1-score, G-mean, and accuracy as 0.643, 0.656, and 0.981, respectively) and SRI metrics (with mean structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), mean squared error (IMMSE), and mean absolute deviation (MAD) as 0.966, 0.735, 0.073, and 0.226, respectively) for all the sub-apertures of the 18 transparent objects in MSPLFI dataset as compared with those obtained from the methods in the literature considered in this paper. Future work will exploit the integration of machine learning for better SRD accuracy and SRI quality.


2017 ◽  
Vol 77 (11) ◽  
pp. 13513-13530 ◽  
Author(s):  
Bo Jiang ◽  
Hongqi Meng ◽  
Jian Zhao ◽  
Xiaolei Ma ◽  
Siyu Jiang ◽  
...  

2021 ◽  
Author(s):  
Lingchao Zhao ◽  
Xiaolin Gong ◽  
Kaihua Liu ◽  
Jian Wang ◽  
Bai Zhao ◽  
...  

Author(s):  
Gaber Hassan ◽  
Khalid M. Hosny ◽  
R. M. Farouk ◽  
Ahmed M. Alzohairy

One of the most often used techniques to represent color images is quaternion algebra. This study introduces the quaternion Krawtchouk moments, QKrMs, as a new set of moments to represent color images. Krawtchouk moments (KrMs) represent one type of discrete moments. QKrMs use traditional Krawtchouk moments of each color channel to describe color images. This new set of moments is defined by using orthogonal polynomials called the Krawtchouk polynomials. The stability against the translation, rotation, and scaling transformations for QKrMs is discussed. The performance of the proposed QKrMs is evaluated against other discrete quaternion moments for image reconstruction capability, toughness against various types of noise, invariance to similarity transformations, color face image recognition, and CPU elapsed times.


Sign in / Sign up

Export Citation Format

Share Document