Wind Resistance Evaluation to Dynamic Response of Mechanically Anchored Waterproofing Membrane System

Author(s):  
Hiroyuiki Miyauchi ◽  
Bartko Michal ◽  
Nobuo Katou ◽  
Kyoji Tanaka
2010 ◽  
Vol 75 (650) ◽  
pp. 709-714 ◽  
Author(s):  
Nobuo KATO ◽  
Hiromu HONDA ◽  
Hiroyuki MIYAUCHI ◽  
Shuji NAKAMURA ◽  
Kyoji TANAKA

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4229
Author(s):  
Kyu-Hwan Oh ◽  
Soo-Yeon Kim ◽  
Yong-Gul Park

A joint- or crack-opening resistance evaluation method for the selection of optimal waterproofing material for a railroad bridge deck is proposed. The joint opening range (mm) for the evaluation, and a typical load case of a high-speed double-track railroad bridge structure deck, is analyzed through the finite element method (FEM) and the results of analysis are used to calculate the minimum opening range. The evaluation method is then demonstrated with 4 commonly used waterproofing types of cementitious membrane system: a polyurethane coating system, self-adhesive asphalt sheet system and synthetic polymerized rubber gel composite asphalt sheet system. Five specimens of each type are subjected to continuous joint opening under 4 different joint width range conditions (1.5, 3.0, 4.5, and 6.0 mm), and the joint-opening resistance performance is compared. The proposal for the evaluation criteria and the specimen test results demonstrate how the evaluation method is pertinent for future selection of waterproofing membranes for the sustainability of high-speed railroad bridge deck structures.


Author(s):  
C. L. Scott ◽  
W. R. Finnerty

Acinetobacter sp. HO-1-N, a gram-negative hydrocarbon oxidizing bacterium previously designated Micrococcus cerificans, has been shown to sequester the hydrocarbon into intracytoplasmic pools as a result of growth on this substrate. In hydrocarbon grown cells, an intracytoplasmic membrane system was also observed along with a doubling of cellular phospholipids (Z). However, using conventional dehydration and embedding procedures in preparing thin sectioned material, the hydrocarbon is extracted from the cells. This may lead to structural distortion, consequently, the freeze-etch technique was applied to preserve the integrity of the cell.


Author(s):  
Jindan Song

Potassium permanganate has been used as a fixative for the botanical specimen and membrane system in thin section by Glauert (1975). A new potassium permanganate fixative ( Trisodium citrate 60mM, Potassium chloride 25mM, Magnesium chloride 35mM, and Potassium permanganate 125mM ) for localizing membranous system in whole_mount cultured cells with standard trasmission electron microscopy and phase_contrast microscopy has been developed). Here, we report that using this new potassium permanganate fixative for membranous system in sections.Cultured cells, CV_1 (African green monkey kidney epithelial cells), Balb/c 3T3 ( Mouse embryo fibroblast ) and MCF_7 (Human adenocarcinoma cell line) were used for this study. All cells were grown on 35mm plastic dishes in DME medium containing 5% calf serum at 37 c with 100% humidity and 5% CO2. Using the potassium permanganate fixative to fix the cells for about 7 minutes. After fixation, the cells were dehydrated in a graded series of ethanol.


Sign in / Sign up

Export Citation Format

Share Document