Metamodel Based Methodology for Dynamic Component Systems

Author(s):  
Gabor Batori ◽  
Zoltan Theisz ◽  
Domonkos Asztalos
Author(s):  
D. A. Smith

The nucleation and growth processes which lead to the formation of a thin film are particularly amenable to investigation by transmission electron microscopy either in situ or subsequent to deposition. In situ studies have enabled the observation of island nucleation and growth, together with addition of atoms to surface steps. This paper is concerned with post-deposition crystallization of amorphous alloys. It will be argued that the processes occurring during low temperature deposition of one component systems are related but the evidence is mainly indirect. Amorphous films result when the deposition conditions such as low temperature or the presence of impurities (intentional or unintentional) preclude the atomic mobility necessary for crystallization. Representative examples of this behavior are CVD silicon grown below about 670°C, metalloids, such as antimony deposited at room temperature, binary alloys or compounds such as Cu-Ag or Cr O2, respectively. Elemental metals are not stable in the amorphous state.


1979 ◽  
Vol 7 (1) ◽  
pp. 31-39
Author(s):  
G. S. Ludwig ◽  
F. C. Brenner

Abstract An automatic tread gaging machine has been developed. It consists of three component systems: (1) a laser gaging head, (2) a tire handling device, and (3) a computer that controls the movement of the tire handling machine, processes the data, and computes the least-squares straight line from which a wear rate may be estimated. Experimental tests show that the machine has good repeatability. In comparisons with measurements obtained by a hand gage, the automatic machine gives smaller average groove depths. The difference before and after a period of wear for both methods of measurement are the same. Wear rates estimated from the slopes of straight lines fitted to both sets of data are not significantly different.


2008 ◽  
Vol 18 (1) ◽  
pp. 996-1010 ◽  
Author(s):  
Frédéric Autran ◽  
Jean-Philippe Auzelle ◽  
Denise Cattan ◽  
Jean-Luc Garnier ◽  
Dominique Luzeaux ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Robin-Lee Troskie ◽  
Yohaann Jafrani ◽  
Tim R. Mercer ◽  
Adam D. Ewing ◽  
Geoffrey J. Faulkner ◽  
...  

AbstractPseudogenes are gene copies presumed to mainly be functionless relics of evolution due to acquired deleterious mutations or transcriptional silencing. Using deep full-length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape.


2021 ◽  
Vol 217 (2) ◽  
Author(s):  
Alexander G. Hayes ◽  
P. Corlies ◽  
C. Tate ◽  
M. Barrington ◽  
J. F. Bell ◽  
...  

AbstractThe NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ($25.5^{\circ }\, \times 19.1^{\circ }\ \mathrm{FOV}$ 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ($6.2^{\circ } \, \times 4.2^{\circ }\ \mathrm{FOV}$ 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 μm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover’s mast with a stereo baseline of $24.3\pm 0.1$ 24.3 ± 0.1  cm and a toe-in angle of $1.17\pm 0.03^{\circ }$ 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with $1600\times 1200$ 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors’ Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26$^{th}$ t h and May 9$^{th}$ t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be $<10\%$ < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows $\mathrm{MTF}_{\mathit{Nyquist}}=0.26-0.50$ MTF Nyquist = 0.26 − 0.50 across all zoom, focus, and filter positions, exceeding the $>0.2$ > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples.


2000 ◽  
Author(s):  
Grigory V. Merkulov ◽  
Valentin M. Ievlev ◽  
Evgeny V. Shvedov ◽  
Vadim P. Ampilogov

Open Theology ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 547-556
Author(s):  
Martin Nitsche

AbstractThis study focuses on various phenomenological conceptions of the invisible in order to consider to what extent and in what way they involve moments of hiddenness. The relationship among phenomenality, invisibility, and hiddenness is examined in the works of Husserl, Heidegger, Henry, and Merleau-Ponty. The study explains why phenomenologists prefer speaking about the invisible over a discourse of the hidden. It shows that the phenomenological method does not display the invisibility as a limit of experience but rather as a dynamic component of relational nature of any experience, including the religious one. Special attention is paid to topological moments of the relationship between the visible and the invisible.


Sign in / Sign up

Export Citation Format

Share Document