scholarly journals The role of the two-component systems Cpx and Arc in protein alterations upon gentamicin treatment in Escherichia coli

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Emina Ćudić ◽  
Kristin Surmann ◽  
Gianna Panasia ◽  
Elke Hammer ◽  
Sabine Hunke
mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V. Sastry ◽  
Ye Gao ◽  
...  

ABSTRACT Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded. IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli’s two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.


2007 ◽  
Vol 104 (47) ◽  
pp. 18712-18717 ◽  
Author(s):  
Y. Eguchi ◽  
J. Itou ◽  
M. Yamane ◽  
R. Demizu ◽  
F. Yamato ◽  
...  

2020 ◽  
Vol 65 (3) ◽  
Author(s):  
Annie I. Chen ◽  
Francisco Javier Albicoro ◽  
Jun Zhu ◽  
Mark Goulian

ABSTRACT Polymyxins are a class of cyclic peptides with antimicrobial activity against Gram-negative bacteria. In Enterobacteriaceae, the PhoQ/PhoP and PmrB/PmrA two-component systems regulate many genes that confer resistance to both polymyxins and host antimicrobial peptides. The activities of these two-component systems are modulated by additional proteins that are conserved across Enterobacteriaceae, such as MgrB, a negative regulator of PhoQ, and PmrD, a “connector” protein that activates PmrB/PmrA in response to PhoQ/PhoP stimulation. Despite the conservation of many protein components of the PhoQ/PhoP-PmrD-PmrB/PmrA network, the specific molecular interactions and regulatory mechanisms vary across different genera. Here, we explore the role of PmrD in modulating this signaling network in Klebsiella pneumoniae and Escherichia coli. We show that in K. pneumoniae, PmrD is not required for polymyxin resistance arising from mutation of mgrB—the most common cause of spontaneous polymyxin resistance in this bacterium—suggesting that direct activation of polymyxin resistance genes by PhoQ/PhoP plays a critical role in this resistance pathway. However, for conditions of low pH or intermediate iron concentrations, both of which stimulate PmrB/PmrA, we find that PmrD does contribute to resistance. We further show that in E. coli, PmrD functions as a connector between PhoQ/PhoP and PmrB/PmrA, in contrast with previous reports. In this case, activity also depends on PmrB/PmrA stimulation, or on very high activation of PhoQ/PhoP. Our results indicate that the importance of the PmrD connector in modulating the polymyxin resistance network depends on both the network organization and on the environmental conditions associated with PmrB stimulation.


2020 ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V Sastry ◽  
Ye Gao ◽  
...  

AbstractEscherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data was used to validate condition-specific target gene binding sites. Based on this data we (1) identify the target genes for each TCS; (2) show how the target genes are transcribed in response to stimulus; and (3) reveal novel relationships between TCSs, which indicate non-cognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded.ImportanceE. coli is a common commensal microbe found in human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections and meningitis. E. coli’s two-component system (TCS) modulates target gene expression, specially related to virulence, pathogenesis and anti-microbial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of the TCSs to infer its environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNAseq, independent component analysis, ChIP-exo and data mining, we show that TCSs have five different modes of transcriptional regulation. Our data further highlights non-cognate inducers of TCSs emphasizing cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results when further incorporated with genome scale metabolic models can lead to understanding of metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions.


Sign in / Sign up

Export Citation Format

Share Document