Algorithm Research of ECG Characteristic Points Detection Based on Wavelet Transforms

Author(s):  
Li Wang ◽  
Zhihong Chen ◽  
Xin Zhang
1995 ◽  
Vol 42 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Cuiwei Li ◽  
Chongxun Zheng ◽  
Changfeng Tai

2007 ◽  
Vol 66 (6) ◽  
pp. 505-512
Author(s):  
A. D. Kukharev ◽  
Yu. S. Evstifeev ◽  
V. G. Yakovlev

2014 ◽  
Vol 2 (1) ◽  
pp. 60-69
Author(s):  
Divya Choudhary ◽  
◽  
Siripong Malasri ◽  
Mallory Harvey ◽  
Amanda Smith

Author(s):  
Peter Matveevich Mazurkin ◽  
Yana Oltgovna Georgieva

The purpose of the article is the analysis of asymmetric wavelets in binary relations between three coordinates at 290 characteristic points from the source to the mouth of the small river Irovka. The hypsometric characteristic is the most important property of the relief. The Irovka River belongs to a low level, at the mouth it is 89 m high, and at the source it is 148 m above sea level. Modeling of binary relations with latitude, longitude, and height has shown that local latitude receives the greatest quantum certainty. In this case, all paired regularities received a correlation coefficient of more than 0.95. Such a high adequacy of wave patterns shows that geomorphology can go over to the wave multiple fractal representation of the relief. The Irovka River is characterized by a small anthropogenic impact, therefore, the relief over a length of 69 km has the natural character of the oscillatory adaptation of a small river to the surface of the Vyatka Uval from its eastern side. This allows us to proceed to the analysis of the four tributaries of the small river Irovka, as well as to model the relief of the entire catchment basin of 917 km2. The greatest adequacy with a correlation coefficient of 0.9976 was obtained by the influence of latitude on longitude, that is, the geographical location of the relief of the river channel with respect to the geomorphology of the Vyatka Uval. In second place with a correlation of 0.9967 was the influence of the height of the points of the channel of the small river on local longitude and it is also mainly determined by the relief of the Vyatka Uval. In third place was the effect of latitude on height with a correlation coefficient of 0.9859. And in last sixth place is the inverse effect of altitude on local latitude in the North-South direction.


Author(s):  
Eirik Berge

AbstractWe investigate the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })\subset L^{2}(G)$$ W g ( H π ) ⊂ L 2 ( G ) arising from square integrable representations $$\pi :G \rightarrow \mathcal {U}(\mathcal {H}_{\pi })$$ π : G → U ( H π ) of a locally compact group G. We show that the wavelet spaces are rigid in the sense that non-trivial intersection between them imposes strong restrictions. Moreover, we use this to derive consequences for wavelet transforms related to convexity and functions of positive type. Motivated by the reproducing kernel Hilbert space structure of wavelet spaces we examine an interpolation problem. In the setting of time–frequency analysis, this problem turns out to be equivalent to the HRT-conjecture. Finally, we consider the problem of whether all the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })$$ W g ( H π ) of a locally compact group G collectively exhaust the ambient space $$L^{2}(G)$$ L 2 ( G ) . We show that the answer is affirmative for compact groups, while negative for the reduced Heisenberg group.


2021 ◽  
Vol 11 (9) ◽  
pp. 4259
Author(s):  
Anna Szymczak-Graczyk

This article presents the effect of taking into account the subgrade coefficient on static work of a pontoon with an internal partition, made in one stage and treated computationally as a monolithic closed rectangular tank. An exemplary pontoon is a single, ready-made shipping element that can be used as a float for a building. By assembling several floats together, the structure can form a floating platform. Due to the increasingly violent weather phenomena and the necessity to ensure safe habitation for people in countries at risk of inundation or flooding, amphibious construction could provide new solutions. This article presents calculations for a real pontoon made in one stage for the purpose of conducting research. Since it is a closed structure without any joint or contact, it can be concluded that it is impossible for water to get inside. However, in order to exclude the possibility of the pontoon filling with water, its interior was filled with Styrofoam. For static calculations, the variational approach to the finite difference method was used, assuming the condition for the minimum energy of elastic deflection during bending, taking into account the cooperation of the tank walls with the Styrofoam filling treated as a Winkler elastic substrate and assuming that Poisson’s ratio ν = 0. Based on the results, charts were made illustrating the change in bending moments at the characteristic points of the analysed tank depending on acting loads. The calculations included hydrostatic loads on the upper plate and ice floe pressure as well as buoyancy, stability and metacentric height of the pontoon. The aim of the study is to show a finished product—a single-piece pontoon that can be a prefabricated element designed for use as a float for “houses on water”.


Sign in / Sign up

Export Citation Format

Share Document