Prediction of Ferrite-Martensite Dual-Phase Steels Mechanical Properties by Use of Artificial Neural Networks

2013 ◽  
Vol 773-774 ◽  
pp. 268-274
Author(s):  
Amir Ghiami ◽  
Ramin Khamedi

This paper presents an investigation of the capabilities of artificial neural networks (ANN) in predicting some mechanical properties of Ferrite-Martensite dual-phase steels applicable for different industries like auto-making. Using ANNs instead of different destructive and non-destructive tests to determine the material properties, reduces costs and reduces the need for special testing facilities. Networks were trained with use of a back propagation (BP) error algorithm. In order to provide data for training the ANNs, mechanical properties, inter-critical annealing temperature and information about the microstructures of many specimens were examined. After the ANNs were trained, the four parameters of yield stress, ultimate tensile stress, total elongation and the work hardening exponent were simulated. Finally a comparison of the predicted and experimental values indicates that the results obtained from the given input data reveal a good ability of the well-trained ANN to predict the described mechanical properties.

2021 ◽  
Author(s):  
Mateus Alexandre da Silva ◽  
Marina Neves Merlo ◽  
Michael Silveira Thebaldi ◽  
Danton Diego Ferreira ◽  
Felipe Schwerz ◽  
...  

Abstract Predicting rainfall can prevent and mitigate damages caused by its deficit or excess, besides providing necessary tools for adequate planning for the use of water. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities in the metropolitan region of Belo Horizonte, using artificial neural networks (ANN) trained with different climate variables, and to indicate the suitability of such variables as inputs to these models. The models were developed through the MATLAB® software version R2011a, using the NNTOOL toolbox. The ANN’s were trained by the multilayer perceptron architecture and the Feedforward and Back propagation algorithm, using two combinations of input data were used, with 2 and 6 variables, and one combination of input data with 3 of the 6 variables most correlated to observed rainfall from 1970 to 1999, to predict the rainfall from 2000 to 2009. The most correlated variables to the rainfall of the following month are the sequential number corresponding to the month, total rainfall and average compensated temperature, and the best performance was obtained with these variables. Furthermore, it was concluded that the performance of the models was satisfactory; however, they presented limitations for predicting months with high rainfall.


2013 ◽  
Vol 14 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Issam Hanafi ◽  
Francisco Mata Cabrera ◽  
Abdellatif Khamlichi ◽  
Ignacio Garrido ◽  
José Tejero Manzanares

2018 ◽  
Vol 11 (2) ◽  
pp. 290-314 ◽  
Author(s):  
Joseph Awoamim Yacim ◽  
Douw Gert Brand Boshoff

Purpose The paper aims to investigate the application of particle swarm optimisation and back propagation in weights optimisation and training of artificial neural networks within the mass appraisal industry and to compare the performance with standalone back propagation, genetic algorithm with back propagation and regression models. Design/methodology/approach The study utilised linear regression modelling before the semi-log and log-log models with a sample of 3,242 single-family dwellings. This was followed by the hybrid systems in the selection of optimal attribute weights and training of the artificial neural networks. Also, the standalone back propagation algorithm was used for the network training, and finally, the performance of each model was evaluated using accuracy test statistics. Findings The study found that combining particle swarm optimisation with back propagation in global and local search for attribute weights enhances the predictive accuracy of artificial neural networks. This also enhances transparency of the process, because it shows relative importance of attributes. Research limitations/implications A robust assessment of the models’ predictive accuracy was inhibited by fewer accuracy test statistics found in the software. The research demonstrates the efficacy of combining two models in the assessment of property values. Originality/value This work demonstrated the practicability of combining particle swarm optimisation with back propagation algorithms in finding optimal weights and training of the artificial neural networks within the mass appraisal environment.


2021 ◽  
pp. 758-779
Author(s):  
Lusdali Castillo Delgado ◽  
Daniel Enrique Porta Maldonado ◽  
Juan J. Soria ◽  
Leopoldo Choque Flores

Author(s):  
Melda Yucel ◽  
Sinan Melih Nigdeli ◽  
Gebrail Bekdaş

This chapter reveals the advantages of artificial neural networks (ANNs) by means of prediction success and effects on solutions for various problems. With this aim, initially, multilayer ANNs and their structural properties are explained. Then, feed-forward ANNs and a type of training algorithm called back-propagation, which was benefited for these type networks, are presented. Different structural design problems from civil engineering are optimized, and handled intended for obtaining prediction results thanks to usage of ANNs.


Sign in / Sign up

Export Citation Format

Share Document