Simulation of Elastic Vibration of Bus Frames

Author(s):  
Péter Toman ◽  
Pál Mihálffy ◽  
István Bíró
Keyword(s):  
2020 ◽  
Vol 7 (1) ◽  
pp. 153-165
Author(s):  
Rajendran Selvamani ◽  
M. Mahaveer Sree Jayan ◽  
Rossana Dimitri ◽  
Francesco Tornabene ◽  
Farzad Ebrahimi

AbstractThe present paper aims at studying the nonlinear ultrasonic waves in a magneto-thermo-elastic armchair single-walled (SW) carbon nanotube (CNT) with mass sensors resting on a polymer substrate. The analytical formulation accounts for small scale effects based on the Eringen’s nonlocal elasticity theory. The mathematical model and its differential equations are solved theoretically in terms of dimensionless frequencies while assuming a nonlinear Winkler-Pasternak-type foundation. The solution is obtained by means of ultrasonic wave dispersion relations. A parametric work is carried out to check for the effect of the nonlocal scaling parameter, together with the magneto-mechanical loadings, the foundation parameters, the attached mass, boundary conditions and geometries, on the dimensionless frequency of nanotubes. The sensitivity of the mechanical response of nanotubes investigated herein, could be of great interest for design purposes in nano-engineering systems and devices.


2012 ◽  
Vol 518-523 ◽  
pp. 3768-3771
Author(s):  
Zhi Yong Xie ◽  
Qi Dou Zhou ◽  
Gang Ji

The exciting force’s accurate measurement of is crucial to the structure-born sound radiation. Forced vibration and sound radiation of the ribbed cylinder is examined in the anechoic room. An approach called added mass and damping method is proposed to calculate the elastic vibration and acoustic field of the cylinder. Results obtained from simulation are show to be in good agreement with the experimental data. Sound radiation induced by different input loading form is examined via simulation and experiment. And the equipollence of force and pressure acting on the base is validated.


2011 ◽  
Vol 462-463 ◽  
pp. 1127-1133
Author(s):  
Zhu Shan Shao ◽  
Guo Wei Ma ◽  
Zhan Ping Song

Vibration characteristics of partially liquid-filled or partially liquid-surrounded composite cylindrical shells are investigated in this paper. Using Rayleigh-Ritz energy method and Love’s shell theory, eigenvalue equation of the problem is derived, and the polynomial for natural frequencies of such shells is further obtained. The external work by the hydrodynamic pressure, which is introduced by liquid sloshing, is taken into account in the energy function. Hydro-elastic vibration characteristics of a composite cylindrical shell are studied by using the present method. Effects of liquid level, liquid density, fiber orientation, length-to-radius ratio, and thickness-to-radius ratio on the natural frequencies are analyzed and graphically presented.


Sign in / Sign up

Export Citation Format

Share Document