A Damage Constitutive Model of Rock Salt Based on Acoustic Emission Characteristics

Author(s):  
Deyi Jiang ◽  
Jie Chen ◽  
Song Ren ◽  
Yuan Xi ◽  
Chunhe Yang
Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1040 ◽  
Author(s):  
Wanrong Liu ◽  
Wei Yuan ◽  
Yatao Yan ◽  
Xiao Wang

In this manuscript, the numerical coal-rock combined bodies with different height ratios of rock part to coal-rock combined body (HRRC) were established by particle flow code (PFC) firstly, and then the influence of different HRRC on mechanical properties and numerical acoustic emission (AE) characteristics of coal-rock combined bodies were investigated. Finally, the damage constitutive model of the coal-rock combined body was discussed. The research results show that with the increase of the HRRC, the UCS and the elastic modulus (E) of the combined coal-rock bodies increased. The failure of coal-rock combined bodies is mainly focused on the coal body. The evolution law of AE hits of coal-rock combined bodies have three stages, named stable stage, rapid ascending stage, and rapid descending stage. The damage variable curves of coal-rock combined body have two stages, named slowly damage stage and sharply damage stage. The damage constitutive relation based on AE hits can well reflect the stress-strain relationships with a lower HRRC. However, for a higher HRRC, the damage constitutive equation is not accurately and the damage of the rock part in the coal-rock-combined body should be considered.


Author(s):  
Jianfeng Liu ◽  
Yilin Liao ◽  
Chaofu Deng ◽  
Qiangxing Zhang ◽  
Zhicheng Li ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yuanshuai Zhang ◽  
Shuangying Zuo ◽  
Bo Yu ◽  
Shiwan Chen ◽  
Jienan Jia

To reveal the mechanical characteristics and damage evolution mechanism of limestone in the bending process, the cumulative acoustic emission (AE) hits were used to define the damage variable, and the rock microbody hypothesis and the Weibull distribution function were applied to further improve the damage variable. Meanwhile, the bending damage constitutive model of limestone under three-point bending was developed based on the Lemaitre strain equivalence principle and the continuum damage theory. Then, the three-point bending test with acoustic emission monitoring was carried out to verify the rationality and validity of the model. Results showed that the modified damage variable D had an exponential distribution with the strain ε, and the damage was mainly concentrated in the macrocrack propagation stage. Moreover, the bending neutral layer moved towards the compressive zone in the bending damage process. The bending neutral layer, furthermore, moved slowly a small distance at the initial stage of bending fracture but moved fast a long distance at the end stage of bending fracture. In addition, the bending damage constitutive model could be quantitatively expressed by the cumulative AE hits Np, the stress σ, the strain ε, and Young’s modulus E. The theoretical stress-strain model curves agreed well with experimental results, which demonstrated that the proposed model could capture the damage evolution of limestone reasonably in the bending process.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Haijiang Zhang ◽  
Xiaohu Zhang ◽  
Hongbo Zhou

In this study, considering the scale effect of rock mass, the influence of different height-to-diameter ratios on rock mechanics and acoustic emission characteristics was studied by using PFC2D software. The damage constitutive model of rock was established, and the damage evolution characteristics of rock with different height-to-diameter ratios were further analyzed. The results showed that, with the increase of height-to-diameter ratio K, the uniaxial compressive strength and peak strain of rock exhibited a gradual decrease; however, the elastic modulus gradually increased. Moreover, rock failure modes exhibited different characteristics under different K values. The scale effect showed little influence on the acoustic emission characteristics in the elastic stage; nonetheless, in the plastic deformation stage and the residual damage stage, with the increase of the rock’s height-to-diameter ratio, the maximum number of impacts of acoustic emission increased, the range of strong strain of acoustic emission decreased, and the maximum time of acoustic emission impacts increased gradually. The height-to-diameter ratio of the rock slightly influenced the zero-damage stage of the rock, but the damage affecting the rock increased slowly and accelerated the development stage. The damage evolution law was found to be similar when the K values varied from 1.0 to 2.0; however, when the K was greater than 2.0, the damage evolution law exhibited the characteristics of slowing down in the acceleration phase.


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Zhongzhong Liu ◽  
Hanpeng Wang ◽  
Su Wang ◽  
Yang Xue ◽  
Chong Zhang

Sign in / Sign up

Export Citation Format

Share Document