Guiding Regional Climate Adaptation in Coastal Areas

Author(s):  
Helge Bormann ◽  
Rob van der Krogt ◽  
Leo Adriaanse ◽  
Frank Ahlhorn ◽  
Ruben Akkermans ◽  
...  
Author(s):  
Helge Bormann ◽  
Rob van der Krogt ◽  
Leo Adriaanse ◽  
Frank Ahlhorn ◽  
Ruben Akkermans ◽  
...  

2016 ◽  
Vol 73 (9) ◽  
pp. 2251-2259 ◽  
Author(s):  
J. U. Hasse ◽  
D. E. Weingaertner

As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) ‘dynaklim – Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)’, the Roadmap 2020 ‘Regional Climate Adaptation’ has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap ‘Water Sensitive Urban Design 2020’. With a focus on the process support tool ‘KlimaFLEX’, one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.


2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 2959-2970
Author(s):  
Maialen Iturbide ◽  
José M. Gutiérrez ◽  
Lincoln M. Alves ◽  
Joaquín Bedia ◽  
Ruth Cerezo-Mota ◽  
...  

Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).


2020 ◽  
Author(s):  
Marjanne Zander ◽  
Frederiek Sperna Weiland ◽  
Albrecht Weerts

<p>In this study a methodology is developed and tested to delineate homogeneous regions of extreme rainfall around a city of interest using meteorological indices from reanalysis data.</p><p>Scenarios of future climate change established with numerical climate models are well-established tools to help inform climate adaptation policy. The latest generation of regional climate models is now employed at a grid resolution of 2 to 3 kilometers. This enables the simulation of convection; whereby intensive convective rainfall is better represented (Kendon et al., 2017). However, the associated large computational burden limits the simulation length, which poses a challenge for estimating future rainfall statistics.</p><p>Rainfall return periods are a commonly used indicator in the planning, design and evaluation of urban water systems and urban water management. In order to estimate potential future rainfall for return periods larger than the length of the simulation length, regional frequency analysis (RFA) can be applied (Li et al., 2017).  For applying RFA, time series from nearby locations are pooled, the locations considered should fall within the same hydroclimatic climate. This is a region which can be assumed statistically homogeneous for extreme rainfall (Hosking & Wallis, 2009).</p><p>Traditionally, these homogeneous regions are defined on geographical region characteristics and rain gauge statistics (Hosking & Wallis, 2009).  To make the methodology less dependent on rain gauge record availability, Gabriele & Chiaravalloti (2013) used meteorological indices derived from reanalysis data to delineate the homogeneous regions.</p><p>Here we evaluate the methodology to delineate homogeneous regions around cities. Meteorological indices are calculated from the ERA-5 reanalysis dataset (Hersbach et al., 2018) for days with extreme rainfall. The variation herein is used as a measure of homogeneity. The derived homogeneous regions will in future work be used for data pooling of convection-permitting regional climate model simulations datasets to enable the derivation of future extreme rainfall statistics.</p><p>This study is embedded in the EU H2020 project EUCP (EUropean Climate Prediction system) (https://www.eucp-project.eu/), which aims to develop a regional climate prediction and projection system based on high-resolution climate models for Europe, to support climate adaptation and mitigation decisions for the coming decades.</p><p>References:</p><p>Gabriele, S., & Chiaravalloti, F. (2013). “Searching regional rainfall homogeneity using atmospheric fields”. Advances in Water Resources, 53, 163–174. https://doi.org/https://doi.org/10.1016/j.advwatres.2012.11.002</p><p>Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., …, Zuo, H. (2018). “Operational global reanalysis: progress, future directions and synergies with NWP”, ECMWF.</p><p>Hosking, J. R. M., & Wallis, J. R. (2009). “Regional Frequency Analysis: An Approach Based on L-Moments”. The Edinburgh Building, Cambridge CB2 2RU, UK: Cambridge University Press. ISBN: 9780511529443.</p><p>Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., … Wilkinson, J. M. (2017). “Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?” BAMS, 98(1), 79–93. https://doi.org/10.1175/BAMS-D-15-0004.1</p><p> Li, J., Evans, J., Johnson, F., & Sharma, A. (2017). “A comparison of methods for estimating climate change impact on design rainfall using a high-resolution RCM.” Journal of Hydrology, 547(Supplement C), 413–427. https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.02.019</p>


2022 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Sophie Fischer ◽  
Luzia Keupp ◽  
Heiko Paeth ◽  
Michael Göhlich ◽  
Jan Schmitt

Climate adaptation supports organizations in dealing with the current and projected effects of climate change by recognizing challenges as opportunities and increasing their economic efficiency. Based on the regional climate model REMO and 13 expert interviews with representatives from mainly manufacturing companies analyzed by the Grounded Theory methodology, this contribution aims to outline actual and future challenges of climate adaptation in the investigated region. We analyze how manufacturing companies respond to climate change and assess the main promoters and barriers of organizational learning in the context of climate adaptation. The expert interviews confirm the importance for companies of having a concrete business case for any strategies and of increasingly making their processes and manufacturing more transparent, through supply chain assessments. In accordance, a focus on strategic management levels is crucial for organizational learning processes as they are responsible for development, mobilization of resources and realization of adaptation concepts.


2014 ◽  
Vol 95 ◽  
pp. 189-197 ◽  
Author(s):  
Suzanne M. Langridge ◽  
Eric H. Hartge ◽  
Ross Clark ◽  
Katie Arkema ◽  
Gregory M. Verutes ◽  
...  

2021 ◽  
Vol 6 (3) ◽  
pp. 306-320 ◽  
Author(s):  
Juliane Wright ◽  
Johannes Flacke ◽  
Jörg Peter Schmitt ◽  
Jürgen Schultze ◽  
Stefan Greiving

The consensus nowadays is that there is a need to adapt to increasingly occurring climate impacts by means of adaptation plans. However, only a minority of European cities has an approved climate adaptation plan by now. To support stakeholder dialogue and decision-making processes in climate adaptation planning, a detailed spatial information and evidence base in terms of a climate impact assessment is needed. This article aims to compare the climate impact assessment done in the context of two regional climate change adaptation planning processes in a Dutch and a German region. To do so, a comparison of guidelines and handbooks, methodological approaches, available data, and resulting maps and products is conducted. Similarities and differences between the two approaches with a particular focus on the input and output of such analysis are identified and both processes are assessed using a set of previously defined quality criteria. Both studies apply a similar conceptualisation of climate impacts and focus strongly on issues concerning their visualisation and communication. At the same time, the methods of how climate impacts are calculated and mapped are quite different. The discussion and conclusion section highlights the need to systematically consider climatic and socio-economic changes when carrying out a climate impact assessment, to focus on a strong visualisation of results for different stakeholder groups, and to link the results to planning processes and especially funding opportunities.


Sign in / Sign up

Export Citation Format

Share Document