Chemical Shifts and Coupling Constants for Phosphorus-31

2014 ◽  
1980 ◽  
Vol 45 (10) ◽  
pp. 2766-2771 ◽  
Author(s):  
Antonín Lyčka

The 13C and 14N NMR spectra of 1M solutions of 1-(substituted phenyl)pyridinium salts (4-CH3, 4-OCH3, H, 4-Cl, 4-Br, 4-I, 3-NO2, 4-NO2, 2,4-(NO2)2 (the 13C NMR only)) have been measured in heavy water at 30 °C. The 13C and 14N chemical shifts, the 1J(CH) coupling constants, some 3J(CH) coupling constants, and values of half-widths Δ 1/2 of the 14N NMR signals are given. The 13C chemical shifts of C(4) correlate with the σ0 constants (δC(4) = (1.79 ± 0.097) σ0 + (147.67 ± 0.041)), whereas no correlation of the nitrogen chemical shifts with the σ constants has been found. The half-widths Δ 1/2 correlate with the σ0 constants (Δ 1/2 = (76.2 ± 4.9) σ0 + (106.4 ± 2.2)) except for 1-phenylpyridinium chloride.


1997 ◽  
Vol 62 (11) ◽  
pp. 1747-1753 ◽  
Author(s):  
Radek Marek

Determination of 15N chemical shifts and heteronuclear coupling constants of substituted 2,2-dimethylpenta-3,4-dienal hydrazones is presented. The chemical shifts were determined by gradient-enhanced inverse-detected NMR techniques and 1H-15N coupling constants were extracted from phase-sensitive gradient-enhanced single-quantum multiple bond correlation experiments. Stereospecific behaviour of the coupling constants 2J(1H,15N) and 1J(1H,13C) has been used to determine the configuration on a C=N double bond. The above-mentioned compounds exist predominantly as E isomers in deuteriochloroform.


1996 ◽  
Vol 61 (4) ◽  
pp. 589-596 ◽  
Author(s):  
Antonín Lyčka

The 1H, 13C and 15N NMR spectra have been measured of coupling products of benzenediazonium salts with nitromethane, nitroethane, 1-nitropropane, 2-nitroethanol and of their sodium salts, and the chemical shifts have been unambiguously assigned. The coupling products have been found to exist only in their hydrazone tautomeric forms. Stereospecific behaviour of the coupling constants 2J(15N,1H) and 2J(15N,13C) in the 15N isotopomers and NOESY have been used to differentiate between the E and Z geometrical isomers. The above-mentioned compounds exist as Z isomers in deuteriochloroform and predominantly (>95%) as E isomers in dimethyl sulfoxide, while the sodium salts are present only as E isomers in dimethyl sulfoxide.


1969 ◽  
Vol 52 (5) ◽  
pp. 1074-1092 ◽  
Author(s):  
L H Keith ◽  
A L Alford ◽  
A W Garrison

Abstract The high resolution nuclear magnetic resonance spectra of the DDT class of pesticides and related compounds are discussed, including a study of the resonances of the aromatic protons as they are affected by various substiluents. The CCl3 moiety on the α-carbon strongly deshields the ortho protons on the aromatic rings, and this deshielding effect is greatly enhanced by substitution of a chlorine ortho rather than para on the aromatic ring. These deshielding effects are explained by a consideration of the electronegativity of the substituents and the stereochemistry of the molecule. The chemical shifts and coupling constants are tabulated.


Author(s):  
Fabio Luiz Paranhos Costa ◽  
Ana Carolina Ferreira de Albuquerque ◽  
Rodolfo Goetze Fiorot ◽  
Luciano Morais Lião ◽  
Lucas Haidar Martorano ◽  
...  

The calculation of NMR parameters for natural products was pioneered by Bifulco and coworkers in 2002. Since then, modelling 1H and 13C chemical shifts and spin-spin coupling constants for this...


1969 ◽  
Vol 47 (1) ◽  
pp. 1-17 ◽  
Author(s):  
L. D. Hall ◽  
J. F. Manville ◽  
N. S. Bhacca

A detailed study has been made of both the 1H and 19F nuclear magnetic resonance (n.m.r.) spectra of a series of hexopyranosyl fluoride derivatives. Some of the 1H spectra were measured at 220 MHz. The 1H spectral parameters define both the configuration and the conformation of each of these derivatives. Study of the 19F n.m.r. parameters revealed several stereospecific dependencies. The 19F chemical shifts depend upon, (a) the orientation of the fluorine substituent with respect to the pyranose ring and, (b) the relative orientation of other substituents attached to the ring; for acetoxy substituents, these configurational dependencies appear to be additive. The vicinal19F–1H coupling constants exhibit a marked angular dependence for which Jtrans = ca. 24 Hz whilst Jgauche = 1.0 to 1.5 Hz for [Formula: see text] and 7.5 to 12.6 Hz for [Formula: see text] The geminal19F–1H couplings depend on the orientation of the substituent at C-2; when this substituent is equatorial JF,H is ca. 53.5 Hz and when it is axial the value is ca. 49 Hz.


1996 ◽  
Vol 74 (11) ◽  
pp. 2121-2130 ◽  
Author(s):  
Fernande D. , ◽  
Corinne Bensimon ◽  
André L. Beauchamp

Complexes of the type [Pt(L)Cl3]− (L = pyridine derivative) were synthesized and studied by 13C and 195Pt NMR spectroscopies. The 195Pt signals were observed between −1720 and −1897 ppm. No correlation between the δ(Pt) and the pKa of the protonated pyridine derivatives was found. The chemical shifts vary with the substituents on the pyridine ligand. Compounds with substituents in ortho positions were observed at lower fields, except for complexes containing hydroxy or amine groups. The latter compounds were observed at higher fields, close to the signals of the Pt-unsubstituted pyridine compound. These results were explained in terms of the solvent effect. The chemical shifts δ(C) and the coupling constants J(13C–195Pt) were measured and the results interpreted with a view of obtaining information on the nature of the Pt—N bond. The possibility of π-bonding between platinum and the pyridine ligand is examined. The conformation of the pyridine ring in relation to the platinum plane and the energies of the rotation barriers around the Pt—N bond in these types of platinum(II) complexes are briefly discussed. The crystal structure of trans-Pt(2,6-(HOCH2)2py)2Cl2•2H2O was determined by X-ray diffraction. The compound is monoclinic, C2/m, a = 7.022(6), b = 15.646(13), c = 8.344(10) Å, β = 93.35(8)°, Z = 2, R = 0.037. The platinum atom is located at the junction of the twofold axis and the mirror plane, the N atoms and the para-C atom of the pyridine ring are situated on the twofold axis, and the chloride ligands are on the mirror plane. The compound crystallizes with molecules of water, which are H-bonded to the hydroxy groups. The Pt—Cl bond distance is 2.306(2) Å, and that of the Pt—N bond is 2.041 (6) Å. The dihedral angle between the platinum and the pyridine planes is 79.8°. Key words: platinum, pyridine derivatives, NMR, crystal structure.


1969 ◽  
Vol 47 (1) ◽  
pp. 19-30 ◽  
Author(s):  
L. D. Hall ◽  
J. F. Manville

Detailed studies, by 1H and 19F nuclear magnetic resonance spectroscopy, of a series of fully esterified pentopyranosyl fluorides, show that all such derivatives favor that conformer in which the fluorine substituent is axially oriented. This conclusion is supported by separate considerations of the vicinal and geminal19F–1H and 1H–1H coupling constants, of the long-range (4J) 1H–1H and 19F–1H coupling constants and of the 19F chemical shifts. The limitations of the above conformational model are discussed.


Sign in / Sign up

Export Citation Format

Share Document