On the Stability of Periodic Systems in Connection with Rotating Shafts

1975 ◽  
pp. 546-564 ◽  
Author(s):  
Ch. Wehrli
1950 ◽  
Vol 2 (1) ◽  
pp. 9-14
Author(s):  
J. Morris

SummaryThis paper has been compiled because of the applicability of the treatment of the stability of the motion of the common spinning top to the problem of the whirling of rotating shafts, carrying loads of appreciable moments of inertia. This problem is assuming renewed interest and importance, especially in the drives of contra-propeller systems and the more recent high speed prime movers.


1998 ◽  
Vol 120 (3) ◽  
pp. 776-783 ◽  
Author(s):  
J. Melanson ◽  
J. W. Zu

Vibration analysis of an internally damped rotating shaft, modeled using Timoshenko beam theory, with general boundary conditions is performed analytically. The equations of motion including the effects of internal viscous and hysteretic damping are derived. Exact solutions for the complex natural frequencies and complex normal modes are provided for each of the six classical boundary conditions. Numerical simulations show the effect of the internal damping on the stability of the rotor system.


1911 ◽  
Vol s2-9 (1) ◽  
pp. 352-359
Author(s):  
F. B. Pidduck

Author(s):  
Ashu Sharma ◽  
S. C. Sinha

Parametrically excited linear systems with oscillatory coefficients have been generally modeled by Mathieu or Hill equations (periodic coefficients) because their stability and response can be determined by Floquét theory. However, in many cases, the parametric excitation is not periodic but consists of frequencies that are incommensurate, making them quasi-periodic. Unfortunately, there is no complete theory for linear dynamic systems with quasi-periodic coefficients. Motivated by this fact, in this work, an approximate approach has been proposed to determine the stability and response of quasi-periodic systems. It is suggested here that a quasi-periodic system may be replaced by a periodic system with an appropriate large principal period and thus making it suitable for an application of the Floquét theory. Based on this premise, a systematic approach has been developed and applied to three typical quasi-periodic systems. The approximate boundaries in stability charts obtained from the proposed method are very close to the exact boundaries of original quasi-periodic equations computed numerically using maximal Lyapunov exponents. Further, the frequency spectra of solutions generated near approximate and exact boundaries are found to be almost identical ensuring a high degree of accuracy. In addition, state transition matrices (STMs) are also computed symbolically in terms of system parameters using Chebyshev polynomials and Picard iteration method. Stability diagrams based on this approach are found to be in excellent agreement with those obtained from numerical methods. The coefficients of parametric excitation terms are not necessarily small in all cases.


1986 ◽  
Vol 53 (2) ◽  
pp. 424-429 ◽  
Author(s):  
W. Zhang ◽  
F. H. Ling

A general theory is developed in this paper for studying the dynamic stability of high-speed nonuniform rotating shafts made of a Boltzmann viscoelastic solid. The equation of motion of the shaft is deduced. The stability criteria are derived by using this equation. The unstable regions for a nonhomogeneous viscoelastic shaft are worked out numerically. Analytical formulas are also given in this paper for determining the planar deflection of the shaft and its inclined angle due to a planar static load. The conclusions for special cases given in the literature known to the authors are all covered by the results in this paper.


Sign in / Sign up

Export Citation Format

Share Document