Particulate Composites Under High Strain Rate and Shock Loading

Author(s):  
J. L. Jordan ◽  
E. B. Herbold
2018 ◽  
Vol 183 ◽  
pp. 02013 ◽  
Author(s):  
G. Whiteman ◽  
D.L. Higgins ◽  
B. Pang ◽  
J.C.F. Millett ◽  
Y-L. Chiu ◽  
...  

The microstructural and mechanical response of materials to shock loading is of the utmost importance in the development of constitutive models for high strain-rate applications. However, unlike a purely mechanical response, to ensure that the microstructure has been generated under conditions of pure one dimensional strain, the target assembly requires both a complex array of momentum traps to prevent lateral releases entering the specimen location from the edges and spall plates to prevent tensile interactions (spall) affecting the microstructure. In this paper, we examine these effects by performing microhardness profiles of shock loaded copper and tantalum samples. In general, variations in hardness both parallel and perpendicular to the shock direction were small indicating successful momentum trapping. Variations in hardness at different locations relative to the impact face are discussed in terms of the initial degree of cold work and the ability to generate and move dislocations in the samples.


2018 ◽  
Vol 35 (1) ◽  
pp. 77-88 ◽  
Author(s):  
M. Eskandari ◽  
M. A. Mohtadi-Bonab ◽  
M. Yeganeh ◽  
J. A. Szpunar ◽  
A. G. Odeshi

2021 ◽  
Vol 250 ◽  
pp. 02015
Author(s):  
Akash R Trivedi ◽  
Clive R Siviour

Polymeric particulate composites are widely used in engineering systems where they are subjected to impact loading – at a variety of temperatures – leading to high strain rate deformation. These materials are highly rate and temperature dependent, and this dependence must be well understood for effective design. It is not uncommon for many of these materials to display mechanical responses that range from glassy and brittle to rubbery and hyperelastic [1-3], due to their polymeric constituents. This makes accurate measurements and modelling not only necessary, but challenging. This is made more difficult by experimental artefacts present when traditional tools such as the split Hopkinson pressure (SHPB) or Kolsky bar are used to interrogate the high rate response of low-impedance materials. The transition from isothermal to adiabatic conditions as the rate of deformation increases also has an effect on the mechanical response, which cannot be neglected if the high rate behaviour is to be accurately predicted. In this paper, time-temperature superposition based frameworks that have enabled the high rate behaviour of neoprene rubber [4] and (plasticised) poly(vinyl chloride) [5] to be captured, will be extended to explore the high strain rate behaviour of unfilled natural rubber and several grades of glass microsphere filled natural rubber particulate composites.


Sign in / Sign up

Export Citation Format

Share Document