scholarly journals On the Kinetic Systems for Simple Reacting Spheres: Modeling and Linearized Equations

Author(s):  
Filipe Carvalho ◽  
Jacek Polewczak ◽  
Ana Jacinta Soares
Keyword(s):  
2018 ◽  
Vol 8 (1) ◽  
pp. 1057-1082
Author(s):  
Runmei Du ◽  
Jürgen Eichhorn ◽  
Qiang Liu ◽  
Chunpeng Wang

Abstract In this paper, we consider control systems governed by a class of semilinear parabolic equations, which are singular at the boundary and possess singular convection and reaction terms. The systems are shown to be null controllable by establishing Carleman estimates, observability inequalities and energy estimates for solutions to linearized equations.


2003 ◽  
Vol 214 ◽  
pp. 95-96
Author(s):  
Wei-Min Gu ◽  
Thierry Foglizzo

We investigate the stability of shocked inviscid isothermal accretion flows onto a black hole. Of the two possible shock positions, the outer one is known to be stable to axisymmetric perturbations, while the inner one is unstable. Our recent work, however, shows that the outer shock is generally linearly unstable to non-axisymmetric perturbations. Eigenmodes and growth rates are obtained by numerical integration of the linearized equations. These results offer new perspectives to interpret the variability of X-ray binaries.


Author(s):  
Masataka Fukunaga

There are two types of time-fractional reaction-subdiffusion equations for two species. One of them generalizes the time derivative of species to fractional order, while in the other type, the diffusion term is differentiated with respect to time of fractional order. In the latter equation, the Turing instability appears as oscillation of concentration of species. In this paper, it is shown by the mode analysis that the critical point for the Turing instability is the standing oscillation of the concentrations of the species that does neither decays nor increases with time. In special cases in which the fractional order is a rational number, the critical point is derived analytically by mode analysis of linearized equations. However, in most cases, the critical point is derived numerically by the linearized equations and two-dimensional (2D) simulations. As a by-product of mode analysis, a method of checking the accuracy of numerical fractional reaction-subdiffusion equation is found. The solutions of the linearized equation at the critical points are used to check accuracy of discretized model of one-dimensional (1D) and 2D fractional reaction–diffusion equations.


1970 ◽  
Vol 92 (1) ◽  
pp. 126-132 ◽  
Author(s):  
R. G. Bressler ◽  
P. W. Wyatt

The effects of capillary grooves on surface wetting and evaporation have been analysed. An attempt has been made to obtain expressions which approximately describe the increase in heat transfer in order to select for given properties and temperature differences a groove of optimum design. For this purpose, it is assumed that the heat transfer mechanism is determined by thermal resistance of the liquid layers inside the grooves. From a numerical evaluation of linearized equations, heat transfer rates have been computed for grooves with triangular, semicircular, and square cross sections.


1988 ◽  
pp. 329-364
Author(s):  
Robert E. Roberson ◽  
Richard Schwertassek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document