Spatial Structures, Wave Fronts, Periodic Waves, Pulses and Solitary Waves in a One-Dimensional Array of Chua’s Circuits

Author(s):  
Vladimir I. Nekorkin ◽  
Manuel G. Velarde
1993 ◽  
Vol 03 (01) ◽  
pp. 215-229 ◽  
Author(s):  
V. PEREZ-MUNUZURI ◽  
V. PEREZ-VILLAR ◽  
L. O. CHUA

Traveling wave fronts are considered for a one-dimensional array of Chua's circuits. This solution is obtained analytically and analyzed for the "primary real bifurcation". For diffusion coefficients less than some nonzero critical value it has been observed numerically that the traveling fronts fail to propagate. This nonlinear phenomena is similar to that observed from pulse propagation in nerves, and in coupled continuously-stirred tank reactors.


Author(s):  
V.I. Nekorkin ◽  
V.B. Kazantsev ◽  
N.F. Rulkov ◽  
M.G. Velarde ◽  
L.O. Chua

2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Yun Wu ◽  
Zhengrong Liu

We study the bifurcation phenomena of nonlinear waves described by a generalized Zakharov-Kuznetsov equationut+au2+bu4ux+γuxxx+δuxyy=0. We reveal four kinds of interesting bifurcation phenomena. The first kind is that the low-kink waves can be bifurcated from the symmetric solitary waves, the 1-blow-up waves, the tall-kink waves, and the antisymmetric solitary waves. The second kind is that the 1-blow-up waves can be bifurcated from the periodic-blow-up waves, the symmetric solitary waves, and the 2-blow-up waves. The third kind is that the periodic-blow-up waves can be bifurcated from the symmetric periodic waves. The fourth kind is that the tall-kink waves can be bifurcated from the symmetric periodic waves.


A detailed discussion of Nekrasov’s approach to the steady water-wave problems leads to a new integral equation formulation of the periodic problem. This development allows the adaptation of the methods of Amick & Toland (1981) to show the convergence of periodic waves to solitary waves in the long-wave limit. In addition, it is shown how the classical integral equation formulation due to Nekrasov leads, via the Maximum Principle, to new results about qualitative features of periodic waves for which there has long been a global existence theory (Krasovskii 1961, Keady & Norbury 1978).


2002 ◽  
Vol 12 (03n04) ◽  
pp. 341-358
Author(s):  
KRISHNA M. KAVI ◽  
DINESH P. MEHTA

This paper presents two algorithms for mutual exclusion on optical bus architectures including the folded one-dimensional bus, the one-dimensional array with pipelined buses (1D APPB), and the two-dimensional array with pipelined buses (2D APPB). The first algorithm guarantees mutual exclusion, while the second guarantees both mutual exclusion and fairness. Both algorithms exploit the predictability of propagation delays in optical buses.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad H. Jabbari ◽  
Parviz Ghadimi ◽  
Ali Masoudi ◽  
Mohammad R. Baradaran

Using one-dimensional Beji & Nadaoka extended Boussinesq equation, a numerical study of solitary waves over submerged breakwaters has been conducted. Two different obstacles of rectangular as well as circular geometries over the seabed inside a channel have been considered in view of solitary waves passing by. Since these bars possess sharp vertical edges, they cannot directly be modeled by Boussinesq equations. Thus, sharply sloped lines over a short span have replaced the vertical sides, and the interactions of waves including reflection, transmission, and dispersion over the seabed with circular and rectangular shapes during the propagation have been investigated. In this numerical simulation, finite element scheme has been used for spatial discretization. Linear elements along with linear interpolation functions have been utilized for velocity components and the water surface elevation. For time integration, a fourth-order Adams-Bashforth-Moulton predictor-corrector method has been applied. Results indicate that neglecting the vertical edges and ignoring the vortex shedding would have minimal effect on the propagating waves and reflected waves with weak nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document