Symbolic Algorithms of Algebraic Perturbation Theory for a Hydrogen Atom: the Stark Effect

Author(s):  
Alexander Gusev ◽  
Valentin Samoilov ◽  
Vitaly Rostovtsev ◽  
Sergue Vinitsky
Author(s):  
Alexander Gusev ◽  
Valentin Samoilov ◽  
Vitaly Rostovtsev ◽  
Sergue Vinitsky

2020 ◽  
Vol 4 (6) ◽  
pp. 427-435
Author(s):  
Randal Hallford ◽  
Preet Sharma

The Non-Hermitian aspect of Quantum Mechanics has been of great interest recently. There have been numerous studies on non-Hermitian Hamiltonians written for natural processes. Some studies have even expressed the hydrogen atom in a non-Hermitian basis. In this paper the principles of non-Hermitian quantum mechanics is applied to both the time independent perturbation theory and to the time dependant theory to calculate the Stark effect. The principles of spherical harmonics has also been used to describe the development in the non-Hermitian case. Finally, the non-Hermitian aspect has been introduced to the well known Stark effect in quantum mechanics to find a condition in which the Stark effect will still be true even if a non-Hermitian Hamiltonian is used. This study completes the understanding at a fundamental level to understand the well known Stark effect. Doi: 10.28991/esj-2020-01242 Full Text: PDF


2017 ◽  
Vol 32 (02n03) ◽  
pp. 1750010 ◽  
Author(s):  
H. L. C. Louzada ◽  
H. Belich

We will study the splitting in the energy spectrum of the hydrogen atom subjected to an uniform electric field (Stark effect) with the Heisenberg algebra deformed leading to the minimum length. We will use the perturbation theory for cases not degenerate (n[Formula: see text]=[Formula: see text]1) and degenerate (n[Formula: see text]=[Formula: see text]2), along with known results of corrections in these levels caused by the minimum length applied purely to the hydrogen atom, so that we may find and estimate the corrections of minimum length applied to the Stark effect.


2005 ◽  
Vol 20 (04) ◽  
pp. 263-269 ◽  
Author(s):  
DENNIS KHETSELIUS

Noncommutative corrections to the MIC–Kepler system (i.e. hydrogen atom in the presence of a magnetic monopole) are computed in Cartesian and spherical coordinates. In the framework of perturbation theory we were able to derive noncommutative corrections to the MIC–Kepler spectrum. We also found a nontrivial contribution to the linear Stark effect which did not exist in the standard hydrogen model.


1976 ◽  
Vol 31 (6) ◽  
pp. 517-523 ◽  
Author(s):  
H. G. Becker ◽  
K. Bleuler

Using the advantages of the O (4)-symmetry the second order Stark-effect of the hydrogen atom is calculated by the Dalgarno-Lewis perturbation method in a purely algebraic manner. The Starkeffect provides the first quantum mechanical example in which the Dalgarno-Lewis equation relevant for second and third order perturbation theory of the whole spectrum can be exactly solved


1981 ◽  
Vol 14 (24) ◽  
pp. 4737-4742 ◽  
Author(s):  
M Friedman ◽  
A Rabinovitch ◽  
R Thieberger
Keyword(s):  

1986 ◽  
Vol 54 (6) ◽  
pp. 565-567
Author(s):  
Jan Makarewicz

1965 ◽  
Vol 20 (12) ◽  
pp. 1676-1681 ◽  
Author(s):  
D. Sutter ◽  
H. Dreizler ◽  
H. D. Rudolph

The microwave spectra of CD3 —S —S —CD3 and CH3 —S —S—CH3 have been measured in the frequency range from 5.5 to 34 kmc/sec. From the six rotational constants an r0-structure has been calculated. STARK-effect measurements have been made for the 101 —110 and 202—211 rotational transitions of CH3—S—S—CH3. The dipole moment was calculated to be (1.985±0.01) Debye. An approximate value for the barrier to internal rotation of the two methyl tops is given, V3= (1.6±0.1) kcal. The calculation has been based on triplet splittings of the rotational lines using second order perturbation theory in the torsional wavefunctions and neglecting first order and cross terms in angular momentum.


Sign in / Sign up

Export Citation Format

Share Document