symbolic algorithms
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1876
Author(s):  
Nerea Martínez ◽  
Alejandro F. Villaverde

The observability of a dynamical system is affected by the presence of external inputs, either known (such as control actions) or unknown (disturbances). Inputs of unknown magnitude are especially detrimental for observability, and they also complicate its analysis. Hence, the availability of computational tools capable of analysing the observability of nonlinear systems with unknown inputs has been limited until lately. Two symbolic algorithms based on differential geometry, ORC-DF and FISPO, have been recently proposed for this task, but their critical analysis and comparison is still lacking. Here we perform an analytical comparison of both algorithms and evaluate their performance on a set of problems, while discussing their strengths and limitations. Additionally, we use these analyses to provide insights about certain aspects of the relationship between inputs and observability. We found that, while ORC-DF and FISPO follow a similar approach, they differ in key aspects that can have a substantial influence on their applicability and computational cost. The FISPO algorithm is more generally applicable, since it can analyse any nonlinear ODE model. The ORC-DF algorithm analyses models that are affine in the inputs, and if those models have known inputs it is sometimes more efficient. Thus, the optimal choice of a method depends on the characteristics of the problem under consideration. To facilitate the use of both algorithms, we implemented the ORC-DF condition in a new version of STRIKE-GOLDD, a MATLAB toolbox for structural identifiability and observability analysis. Since this software tool already had an implementation of the FISPO algorithm, the new release allows modellers and model users the convenience of choosing between different algorithms in a single tool, without changing the coding of their model.


2019 ◽  
Vol 214 ◽  
pp. 05004
Author(s):  
Milena Veneva ◽  
Alexander Ayriyan

This paper presents an experimental performance study of implementations of three symbolic algorithms for solving band matrix systems of linear algebraic equations with heptadiagonal, pentadiagonal, and tridiagonal coefficient matrices. The only assumption on the coefficient matrix in order for the algorithms to be stable is nonsingularity. These algorithms are implemented using the GiNaC library of C++ and the SymPy library of Python, considering five different data storing classes. Performance analysis of the implementations is done using the high-performance computing (HPC) platforms “HybriLIT” and “Avitohol”. The experimental setup and the results from the conducted computations on the individual computer systems are presented and discussed. An analysis of the three algorithms is performed.


10.29007/5z5k ◽  
2018 ◽  
Author(s):  
Krishnendu Chatterjee ◽  
Wolfgang Dvořák ◽  
Monika Henzinger ◽  
Alexander Svozil

Solving parity games, which are equivalent to modal μ-calculus model checking, is a central algorithmic problem in formal methods, with applications in reactive synthesis, program repair, verification of branching-time properties, etc. Besides the standard compu- tation model with the explicit representation of games, another important theoretical model of computation is that of set-based symbolic algorithms. Set-based symbolic algorithms use basic set operations and one-step predecessor operations on the implicit description of games, rather than the explicit representation. The significance of symbolic algorithms is that they provide scalable algorithms for large finite-state systems, as well as for infinite-state systems with finite quotient. Consider parity games on graphs with n vertices and parity conditions with d priorities. While there is a rich literature of explicit algorithms for parity games, the main results for set-based symbolic algorithms are as follows: (a) the basic algorithm that requires O(nd) symbolic operations and O(d) symbolic space; and (b) an improved algorithm that requires O(nd/3+1) symbolic operations and O(n) symbolic space. In this work, our contributions are as follows: (1) We present a black-box set-based symbolic algorithm based on the explicit progress measure algorithm. Two important consequences of our algorithm are as follows: (a) a set-based symbolic algorithm for parity games that requires quasi-polynomially many symbolic operations and O(n) symbolic space; and (b) any future improvement in progress measure based explicit algorithms immediately imply an efficiency improvement in our set-based symbolic algorithm for parity games. (2) We present a set-based symbolic algorithm that requires quasi-polynomially many symbolic operations and O(d · log n) symbolic space. Moreover, for the important special case of d ≤ log n, our algorithm requires only polynomially many symbolic operations and poly-logarithmic symbolic space.


2018 ◽  
Vol 177 ◽  
pp. 07004 ◽  
Author(s):  
Milena Veneva ◽  
Alexander Ayriyan

A class of models of heat transfer processes in a multilayer domain is considered. The governing equation is a nonlinear heat-transfer equation with different temperature-dependent densities and thermal coefficients in each layer. Homogeneous Neumann boundary conditions and ideal contact ones are applied. A finite difference scheme on a special uneven mesh with a second-order approximation in the case of a piecewise constant spatial step is built. This discretization leads to a pentadiagonal system of linear equations (SLEs) with a matrix which is neither diagonally dominant, nor positive definite. Two different methods for solving such a SLE are developed - diagonal dominantization and symbolic algorithms.


Author(s):  
Krishnendu Chatterjee ◽  
Monika Henzinger ◽  
Veronika Loitzenbauer ◽  
Simin Oraee ◽  
Viktor Toman

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Rongsheng Dong ◽  
Yangyang Zhu ◽  
Zhoubo Xu ◽  
Fengying Li

Evaluating the reliability of Multistate Flow Network (MFN) is an NP-hard problem. Ordered binary decision diagram (OBDD) or variants thereof, such as multivalued decision diagram (MDD), are compact and efficient data structures suitable for dealing with large-scale problems. Two symbolic algorithms for evaluating the reliability of MFN, MFN_OBDD and MFN_MDD, are proposed in this paper. In the algorithms, several operating functions are defined to prune the generated decision diagrams. Thereby the state space of capacity combinations is further compressed and the operational complexity of the decision diagrams is further reduced. Meanwhile, the related theoretical proofs and complexity analysis are carried out. Experimental results show the following: (1) compared to the existing decomposition algorithm, the proposed algorithms take less memory space and fewer loops. (2) The number of nodes and the number of variables of MDD generated in MFN_MDD algorithm are much smaller than those of OBDD built in the MFN_OBDD algorithm. (3) In two cases with the same number of arcs, the proposed algorithms are more suitable for calculating the reliability of sparse networks.


Sign in / Sign up

Export Citation Format

Share Document