Mitochondrial Molecular Chaperones hsp60 and mhsp70: Are Their Roles Restricted to Mitochondria?

Author(s):  
B. J. Soltys ◽  
R. S. Gupta
Keyword(s):  
Author(s):  
Umme Hani ◽  
Shivananda Kandagalla ◽  
B.S. Sharath ◽  
K Jyothsna. ◽  
H Manjunatha.

: Hsp90 are molecular chaperones of chronic inflammatory proteins and have emerged as prime target for treatment of inflammation. Principal components from Curcuma longa and Camellia sinensis, Curcumin and EGC respectively possesses anti-inflammatory properties inhibiting cytokines responsible for inflammation. Both act on common pathways in upregulation of heme oxygenase 1 through Pkcδ-Nrf2 pathway and downregulation of Tlr4, which in turn suppress expression of Hsp90. Curcumin and EGC were also found to bind -N and -C terminal domain of Hsp90 respectively. Based on this, work was designed with network pharmacological approach. Hsp90 associated gene targets of Curcumin and EGC were collected from databases, and gene ontology studies were done. PPI were obtained from string database for specific genes involved in Pkcδ-Nrf2 and Tlr4 pathway. Protein interaction network was constructed by cytoscape, and networks of Hsp90, Curcumin and EGC were merged to get common genes involved in Pkcδ-Nrf2 and Tlr4 pathway. Cluego analysis was done for obtained common genes to identify functional behavior in human diseases. Main proteins involved were identified as key regulators in Pkcδ-Nrf2 and Tlr4 pathway for controlling expression of Hsp90 from Curcumin and EGC in inflammation. Docking was performed on main proteins, Hsp90, Pkcδ and Tlr4 with Curcumin and EGC, significant binding energy was obtained for docked complexes. Combinatorial effects of Curcumin and EGC were observed in Pkcδ-Nrf2 and Tlr4pathway. Present study is an attempt to unravel common pathways mediated in intervention of Curcumin and EGC for suppression of Hsp90 associated with inflammation.


2021 ◽  
Author(s):  
Colin M. Hammond ◽  
Hongyu Bao ◽  
Ivo A. Hendriks ◽  
Massimo Carraro ◽  
Alberto García-Nieto ◽  
...  

1999 ◽  
Vol 19 (11) ◽  
pp. 7751-7758 ◽  
Author(s):  
Wei Yan ◽  
Elizabeth A. Craig

ABSTRACT Hsp40s are ubiquitous, conserved proteins which function with molecular chaperones of the Hsp70 class. Sis1 is an essential Hsp40 of the cytosol of Saccharomyces cerevisiae, thought to be required for initiation of translation. We carried out a genetic analysis to determine the regions of Sis1 required to perform its key function(s). A C-terminal truncation of Sis1, removing 231 amino acids but retaining the N-terminal 121 amino acids encompassing the J domain and the glycine-phenylalanine-rich (G-F) region, was able to rescue the inviability of a Δsis1 strain. The yeast cytosol contains other Hsp40s, including Ydj1. To determine which regions carried the critical determinants of Sis1 function, we constructed chimeric genes containing portions of SIS1 and YDJ1. A chimera containing the J domain of Sis1 and the G-F region of Ydj1 could not rescue the lethality of the Δsis1 strain. However, a chimera with the J domain of Ydj1 and the G/F region of Sis1 could rescue the strain’s lethality, indicating that the G-F region is a unique region required for the essential function of Sis1. However, a J domain is also required, as mutants expected to cause a disruption of the interaction of the J domain with Hsp70 are inviable. We conclude that the G-F region, previously thought only to be a linker or spacer region between the J domain and C-terminal regions of Hsp40s, is a critical determinant of Sis1 function.


2019 ◽  
Vol 14 (5) ◽  
pp. 1800523
Author(s):  
Hyeon‐Jung Yang ◽  
Kyung‐Ho Lee ◽  
Hye Jin Lim ◽  
Dong‐Myung Kim

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 182 ◽  
Author(s):  
Massimo Malerba ◽  
Raffaella Cerana

Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO−) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO− scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO− in the FC-induced responses. In particular, ONOO− seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Ji Yoon ◽  
Boyoon Choi ◽  
Eun Jin Kim ◽  
Jiyeon Ohk ◽  
Chansik Yang ◽  
...  

Abstractp62/SQSTM1 is known to act as a key mediator in the selective autophagy of protein aggregates, or aggrephagy, by steering ubiquitinated protein aggregates towards the autophagy pathway. Here, we use a yeast two-hybrid screen to identify the prefoldin-like chaperone UXT as an interacting protein of p62. We show that UXT can bind to protein aggregates as well as the LB domain of p62, and, possibly by forming an oligomer, increase p62 clustering for its efficient targeting to protein aggregates, thereby promoting the formation of the p62 body and clearance of its cargo via autophagy. We also find that ectopic expression of human UXT delays SOD1(A4V)-induced degeneration of motor neurons in a Xenopus model system, and that specific disruption of the interaction between UXT and p62 suppresses UXT-mediated protection. Together, these results indicate that UXT functions as an autophagy adaptor of p62-dependent aggrephagy. Furthermore, our study illustrates a cooperative relationship between molecular chaperones and the aggrephagy machinery that efficiently removes misfolded protein aggregates.


Sign in / Sign up

Export Citation Format

Share Document