chaperone network
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 39)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ankan Bhadra ◽  
Michael Rau ◽  
Jil Daw ◽  
James Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Abstract Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


2021 ◽  
Vol 119 (1) ◽  
pp. e2114997119
Author(s):  
Ashton N. Combs ◽  
Thomas J. Silhavy

The biogenesis of integral β-barrel outer membrane proteins (OMPs) in gram-negative bacteria requires transport by molecular chaperones across the aqueous periplasmic space. Owing in part to the extensive functional redundancy within the periplasmic chaperone network, specific roles for molecular chaperones in OMP quality control and assembly have remained largely elusive. Here, by deliberately perturbing the OMP assembly process through use of multiple folding-defective substrates, we have identified a role for the periplasmic chaperone Skp in ensuring efficient folding of OMPs by the β-barrel assembly machine (Bam) complex. We find that β-barrel substrates that fail to integrate into the membrane in a timely manner are removed from the Bam complex by Skp, thereby allowing for clearance of stalled Bam–OMP complexes. Following the displacement of OMPs from the assembly machinery, Skp subsequently serves as a sacrificial adaptor protein to directly facilitate the degradation of defective OMP substrates by the periplasmic protease DegP. We conclude that Skp acts to ensure efficient β-barrel folding by directly mediating the displacement and degradation of assembly-compromised OMP substrates from the Bam complex.


2021 ◽  
Author(s):  
Ankan K. Bhadra ◽  
Michael J. Rau ◽  
Jil A. Daw ◽  
James A.J. Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


2021 ◽  
Author(s):  
Sarah M Prophet ◽  
Anthony J Rampello ◽  
Robert F Niescier ◽  
Juliana E Shaw ◽  
Anthony J Koleske ◽  
...  

DYT1 dystonia is a highly debilitating neurological movement disorder arising from mutation in the AAA+ ATPase TorsinA. The hallmark of Torsin dysfunction is nuclear envelope blebbing resulting from defects in nuclear pore complex biogenesis. Whether blebs actively contribute to disease manifestation is presently unknown. We report that FG-nucleoporins in the bleb lumen undergo phase separation and contribute to DYT1 dystonia by provoking two proteotoxic insults. Short-lived ubiquitinated proteins that are normally rapidly degraded in healthy cells partition into the bleb lumen and become stabilized. Additionally, blebs selectively sequester a chaperone network composed of HSP70s and HSP40s. The composition of this chaperone network is altered by the bleb component MLF2. We further demonstrate that MLF2 is a catalyst of phase separation that suppresses the ectopic accumulation of FG-nucleoporins and modulates the selective properties and size of condensates in vitro. Our studies identify unprecedented, dual mechanisms of proteotoxicity in the context of liquid-liquid phase separation with direct implications for our understanding of disease etiology and treatment.


2021 ◽  
Author(s):  
Isabella A Lambert-Smith ◽  
Justin J Yerbury ◽  
Darren N Saunders

Disrupted proteome homeostasis (proteostasis) in amyotrophic lateral sclerosis (ALS) has been a major focus of research in the past two decades. Yet the exact processes that normally maintain proteostasis, but that are uniquely disturbed in motor neurons expressing diverse genetic mutations, remain to be established. Obtaining a better understanding of proteostasis disruption in association with different ALS-causing mutations will improve our understanding of ALS pathophysiology and may identify novel therapeutic targets and strategies for ALS patients. Here we describe the development and use of a novel high-content analysis (HCA) assay to investigate proteostasis disturbances caused by the expression of ALS-causing gene variants. This assay involves the use of conformationally-destabilised mutants of firefly luciferase (Fluc) to examine protein folding/re-folding capacity in NSC-34 cells expressing ALS-associated mutations in the genes encoding superoxide dismutase-1 (SOD1A4V) and cyclin F (CCNFS621G). We demonstrate that these Fluc isoforms can be used in high-throughput format to report on reductions in the activity of the chaperone network that result from the expression of SOD1A4V, providing multiplexed information at single-cell resolution. In addition to SOD1A4V and CCNFS621G, NSC-34 models of ALS-associated TDP-43, FUS, UBQLN2, OPTN, VCP and VAPB mutants were generated that could be screened using this assay in future work. For ALS-associated mutant proteins that do cause reductions in protein quality control capacity, such as SOD1A4V, this assay has potential to be applied in drug screening studies to identify candidate compounds that can ameliorate this deficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Conrado C. Gonçalves ◽  
Itai Sharon ◽  
T. Martin Schmeing ◽  
Carlos H. I. Ramos ◽  
Jason C. Young

AbstractIn human cells under stress conditions, misfolded polypeptides can form potentially cytotoxic insoluble aggregates. To eliminate aggregates, the HSP70 chaperone machinery extracts and resolubilizes polypeptides for triage to refolding or degradation. Yeast and bacterial chaperones of the small heat-shock protein (sHSP) family can bind substrates at early stages of misfolding, during the aggregation process. The co-aggregated sHSPs then facilitate downstream disaggregation by HSP70. Because it is unknown whether a human sHSP has this activity, we investigated the disaggregation role of human HSPB1. HSPB1 co-aggregated with unfolded protein substrates, firefly luciferase and mammalian lactate dehydrogenase. The co-aggregates formed with HSPB1 were smaller and more regularly shaped than those formed in its absence. Importantly, co-aggregation promoted the efficient disaggregation and refolding of the substrates, led by HSP70. HSPB1 itself was also extracted during disaggregation, and its homo-oligomerization ability was not required. Therefore, we propose that a human sHSP is an integral part of the chaperone network for protein disaggregation.


Author(s):  
Fan Jiang ◽  
Guofeng Chang ◽  
Zhenzhen Li ◽  
Mostafa Abouzaid ◽  
Xiaoyong Du ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lion Budrass ◽  
Richard P. Fahlman ◽  
Sue-Ann Mok

Molecular chaperone networks fulfill complex roles in protein homeostasis and are essential for maintaining cell health. Hsp40s (commonly referred to as J-proteins) have critical roles in development and are associated with a variety of human diseases, yet little is known regarding the J-proteins with respect to the post-transcriptional mechanisms that regulate their expression. With relatively small alterations in their abundance and stoichiometry altering their activity, post-transcriptional regulation potentially has significant impact on the functions of J-proteins. MicroRNAs (miRNAs) are a large group of non-coding RNAs that form a complex regulatory network impacting gene expression. Here we review and investigate the current knowledge and potential intersection of miRNA regulatory networks with the J-Protein chaperone network. Analysis of datasets from the current version of TargetScan revealed a great number of predicted microRNAs targeting J-proteins compared to the limited reports of interactions to date. There are likely unstudied regulatory interactions that influence chaperone biology contained within our analysis. We go on to present some criteria for prioritizing candidate interactions including potential cooperative targeting of J-Proteins by multiple miRNAs. In summary, we offer a view on the scope of regulation of J-Proteins through miRNAs with the aim of guiding future investigations by identifying key regulatory nodes within these two complex cellular networks.


Sign in / Sign up

Export Citation Format

Share Document