Generalized Gradient Methods of Nondifferentiable Optimization Employing Space Dilatation Operations

Author(s):  
N. Z. Shor
1999 ◽  
Vol 13 (05n06) ◽  
pp. 511-523 ◽  
Author(s):  
J. F. DOBSON

A brief summary is given of electronic density functional theory, including recent developments: generalized gradient methods, hybrid functionals, time dependent density functionals and excited states, van der Waals energy functionals.


2020 ◽  
Author(s):  
Daniel Koch ◽  
Sergei Manzhos

<p></p><p>The generalized gradient approximation (GGA) often fails to correctly describe the electronic structure and thermochemistry of transition metal oxides and is commonly improved using an inexpensive correction term with a scaling parameter <i>U</i>. We tune <i>U</i> to reproduce experimental vanadium oxide redox energetics with a localized basis and a GGA functional. We find the value for <i>U</i> to be significantly lower than what is generally reported with plane-wave bases, with the uncorrected GGA results being in reasonable agreement with experiments. We use this computational setup to calculate interstitial and substitutional <a>insertion energies of main group metals in vanadium pentoxide</a> and find <a>interstitial doping to be thermodynamically favored</a>.</p><p></p>


2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


2014 ◽  
pp. 25-29
Author(s):  
Minh Tam Le ◽  
Van Trung Nguyen ◽  
Thi Tam An Nguyen ◽  
Quang Trung Phan ◽  
Ngoc Thanh Cao

Objectives: Artificial insemination with sperm preparation and inseminate to the uterus is a common method of infertility treatment. Currently two methods used for sperm washing is “swim-up” and “gradient”. Materials and methods:cross-sectional description in 166 cycles of artificial insemination in Hue University Hospital from April, 2012 to March, 2013 in order to compare effectiveness between “swim-up” and “gradient” methods. Samples were collected randomly into two methods. Results:Results of sperm preparation in both methods are equivalent in terms of the following parameters total sperm count, total number of progressive sperm, total good morphology sperm. However, “gradient” method results in higher number of progressive sperm in case with slow motility (38.3% vs. 26.1%) or abnormal morphology (34.9% vs. 19.7 %) compared with “swim-up” method. Pregnancy rates after artificial insemination were similar between two preparation methods. Conclusion:In case of slow motility sperm and abnormal morphology, “gradient” method should be used to increase the number of progressive sperms. Pregnancy outcome depends on many factors other than preparation methods. Key words: Artificial insemination, sperm preparation, infertility treatment


2020 ◽  
Vol 44 (6) ◽  
pp. 580-588
Author(s):  
A López-Rabuñal ◽  
E Lendoiro ◽  
M Concheiro ◽  
M López-Rivadulla ◽  
A Cruz ◽  
...  

Abstract An LC–MS-MS method for the determination of 14 benzodiazepines (BZDs) (alprazolam, α-hydroxyalprazolam, clonazepam, bromazepam, diazepam, nordiazepam, lorazepam, lormetazepam, oxazepam, flunitrazepam, 7-aminoflunitrazepam, triazolam, midazolam and zolpidem) and 15 antidepressants (ADs) (amitriptyline, nortriptyline, imipramine, desipramine, clomipramine, norclomipramine, fluoxetine, norfluoxetine, sertraline, norsertraline, paroxetine, venlafaxine, desmethylvenlafaxine, citalopram and desmethylcitalopram) in meconium was developed and validated. Meconium samples (0.25 ± 0.02 g) were homogenized in methanol and subjected to mixed-mode cation exchange solid-phase extraction. Chromatographic separation was performed in reversed phase, with a gradient of 0.1% formic acid in 2 mM ammonium formate and acetonitrile. Two different chromatographic gradient methods were employed, one for the separation of ADs and another for BZDs. Analytes were monitored by tandem mass spectrometry employing electrospray positive mode in MRM mode (2 transitions per compound). Method validation included: linearity [n = 5, limit of quantification (LOQ) to 400 ng/g], limits of detection (n = 6, 1–20 ng/g), LOQ (n = 9, 5–20 ng/g), selectivity (no endogenous or exogenous interferences), accuracy (n = 15, 90.6–111.5%), imprecision (n = 15, 0–14.6%), matrix effect (n = 10, −73 to 194.9%), extraction efficiency (n = 6, 35.9–91.2%), process efficiency (n = 6, 20.1–188.2%), stability 72 h in the autosampler (n = 3, −8.5 to 9%) and freeze/thaw stability (n = 3, −1.2 to −47%). The method was applied to four meconium specimens, which were analyzed with and without hydrolysis (enzymatic and alkaline). The authentic meconium samples tested positive for alprazolam, α-hydroxyalprazolam, clonazepam, diazepam, nordiazepam, fluoxetine, norfluoxetine, clomipramine and norclomipramine. Therefore, the present LC–MS-MS method allows a high throughput determination of the most common BZDs and ADs in meconium, which could be useful in clinical and forensic settings.


Sign in / Sign up

Export Citation Format

Share Document