Diseases of the Vertebral Column and Spinal Cord

Author(s):  
F. E. Zanella ◽  
G. Friedmann
Keyword(s):  
2021 ◽  
Vol 26 (3) ◽  
pp. 15-19
Author(s):  
Ivona Orgonikova ◽  
Josep Brocal ◽  
Giunio Bruto Cherubini ◽  
Viktor Palus

Assessing the presence of vertebral column instability is essential in animals with vertebral fractures or luxations. Spinal instability is most commonly assessed using a three-compartment model and unstable vertebral fractures and luxations require surgical stabilisation. In cases of compression of the spinal cord (by haematoma, traumatic intervertebral disc extrusion or bone fragment), decompression surgery is necessary. Prompt surgery prevents additional spinal cord damage, but the overall condition of the patient, including any concurrent injuries, needs to be continually kept in mind. The vertebral column can be stabilised using multiple techniques, such as screws, pins, polymethylmetacrylate and plating techniques, as well as external stabilisation and spinal stapling. Complications of spinal surgeries include haemorrhage, infection, neurological deterioration, particularly in cases of spinal stabilisations, implant loosening and failure.


Development ◽  
2021 ◽  
Vol 148 (4) ◽  
pp. dev180612
Author(s):  
Filip J. Wymeersch ◽  
Valerie Wilson ◽  
Anestis Tsakiridis

ABSTRACTThe generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.


2006 ◽  
pp. 144-144
Author(s):  
PK Sahoo ◽  
UN Panda
Keyword(s):  

Author(s):  
Anna Clebone

Myelomeningocele, also known as spina bifida aperta (often shortened to the nonspecific name “spina bifida”) is a congenital disorder of the spine. In infants with a myelomeningocele, the neural tube has not closed, and the vertebral arches have not fused during development, leading to spinal cord and meningeal herniation through the skin. Because of the high potential for injury and infection of the exposed spinal cord, which could lead to lifetime disability, these lesions are typically repaired within 24 to 48 hours after birth. A myelomeningocele occurs before day 28 of human fetal development and is an abnormality in which the posterior neural tube closes incompletely. The outcome is a vertebral column deformity, through which the meningeal-lined sac herniates. After the bony defect is created, the hypothesized mechanism of meningeal herniation is that the pulsations of cerebrospinal fluid act progressively to balloon out the spinal cord. If the sac is filled with spinal nerves or the spinal cord, it is known as a myelomeningocele; if the sac is empty, it is called a meningocele.


Sign in / Sign up

Export Citation Format

Share Document