Tensor Operators and Expectation Values

Author(s):  
Wolfgang Ludwig ◽  
Claus Falter
1994 ◽  
Vol 08 (25n26) ◽  
pp. 3655-3669
Author(s):  
M. SCHEUNERT

The present work is a direct sequel to a recent article by the author, in which he has analysed the tensor product of tensor operators over quantum algebras. Here the results obtained there are summarized and then specialized and extended to prepare possible applications to quantum spin chains. In particular, certain invariant two-point operators are introduced (whose expectation values yield the invariant two-point correlation functions) and their multiplicative properties are derived.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Robin Karlsson ◽  
Andrei Parnachev ◽  
Petar Tadić

AbstractIn d-dimensional CFTs with a large number of degrees of freedom an important set of operators consists of the stress tensor and its products, multi stress tensors. Thermalization of such operators, the equality between their expectation values in heavy states and at finite temperature, is equivalent to a universal behavior of their OPE coefficients with a pair of identical heavy operators. We verify this behavior in a number of examples which include holographic and free CFTs and provide a bootstrap argument for the general case. In a free CFT we check the thermalization of multi stress tensor operators directly and also confirm the equality between the contributions of multi stress tensors to heavy-heavy-light-light correlators and to the corresponding thermal light-light two-point functions by disentangling the contributions of other light operators. Unlike multi stress tensors, these light operators violate the Eigenstate Thermalization Hypothesis and do not thermalize.


1998 ◽  
Vol 93 (5) ◽  
pp. 801-807
Author(s):  
JOACHIM SCHULTE ◽  
MICHAEL BOHM ◽  
RAFAEL RAMIREZ

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Yan Liu ◽  
Xin-Meng Wu

Abstract We study an improved holographic model for the strongly coupled nodal line semimetal which satisfies the duality relation between the rank two tensor operators $$ \overline{\psi}{\gamma}^{\mu v}\psi $$ ψ ¯ γ μv ψ and $$ \overline{\psi}{\gamma}^{\mu v}{\gamma}^5\psi $$ ψ ¯ γ μv γ 5 ψ . We introduce a Chern-Simons term and a mass term in the bulk for a complex two form field which is dual to the above tensor operators and the duality relation is automatically satisfied from holography. We find that there exists a quantum phase transition from a topological nodal line semimetal phase to a trivial phase. In the topological phase, there exist multiple nodal lines in the fermionic spectrum which are topologically nontrivial. The bulk geometries are different from the previous model without the duality constraint, while the resulting properties are qualitatively similar to those in that model. This improved model provides a more natural ground to analyze transports or other properties of strongly coupled nodal line semimetals.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sébastien Descotes-Genon ◽  
Martín Novoa-Brunet ◽  
K. Keri Vos

Abstract We consider the time-dependent analysis of Bd→ KSℓℓ taking into account the time-evolution of the Bd meson and its mixing into $$ {\overline{B}}_d $$ B ¯ d . We discuss the angular conventions required to define the angular observables in a transparent way with respect to CP conjugation. The inclusion of time evolution allows us to identify six new observables, out of which three could be accessed from a time-dependent tagged analysis. We also show that these observables could be obtained by time-integrated measurements in a hadronic environment if flavour tagging is available. We provide simple and precise predictions for these observables in the SM and in NP models with real contributions to SM and chirally flipped operators, which are independent of form factors and charm-loop contributions. As such, these observables provide robust and powerful cross-checks of the New Physics scenarios currently favoured by global fits to b → sℓℓ data. In addition, we discuss the sensitivity of these observables with respect to NP scenarios involving scalar and tensor operators, or CP-violating phases. We illustrate how these new observables can provide a benchmark to discriminate among the various NP scenarios in b → sμμ. We discuss the extension of these results for Bs decays into f0, η or η′.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hirotaka Hayashi ◽  
Takuya Okuda ◽  
Yutaka Yoshida

Abstract We compute by supersymmetric localization the expectation values of half-BPS ’t Hooft line operators in $$ \mathcal{N} $$ N = 2 U(N ), SO(N ) and USp(N ) gauge theories on S1 × ℝ3 with an Ω-deformation. We evaluate the non-perturbative contributions due to monopole screening by calculating the supersymmetric indices of the corresponding supersymmetric quantum mechanics, which we obtain by realizing the gauge theories and the ’t Hooft operators using branes and orientifolds in type II string theories.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gustav Mogull ◽  
Jan Plefka ◽  
Jan Steinhoff

Abstract A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field hμν(x) and position $$ {x}_i^{\mu}\left({\tau}_i\right) $$ x i μ τ i of each black hole on equal footing. Using these both the 3PM three-body gravitational radiation 〈hμv(k)〉 and 2PM two-body deflection $$ \Delta {p}_i^{\mu } $$ Δ p i μ from classical black hole scattering events are obtained. The latter can also be obtained from the eikonal phase of a 2 → 2 scalar S-matrix, which we show corresponds to the free energy of the WQFT.


Sign in / Sign up

Export Citation Format

Share Document