Modern Electrolytic Procedures for the Production of Hydrogen by Splitting Water

Author(s):  
H. W. Nürnberg ◽  
J. Divisek ◽  
B. D. Struck
Author(s):  
Darryl L. James ◽  
Nathan P. Siegel ◽  
Richard B. Diver ◽  
Barry D. Boughton ◽  
Roy E. Hogan

Production of hydrogen using solar thermal energy has the potential to be a viable alternative to other hydrogen production methods, typically fossil-fuel driven processes. Thermochemical reactions for splitting water require high temperatures to operate effectively, for which solar is well-suited. Numerical modeling to investigate the concept of a solar-driven reactor for splitting water is presented in detail in this paper for an innovative reactor, known as the “counter-rotating-ring receiver/reactor/recuperator” (CR5) solar thermochemical heat engine that is presently under development. In this paper, details of numerical simulations predicting the thermal/fluid behavior of the innovative solar-driven thermo-chemical reactor are described in detail. These scoping calculations have been used to provide insight into the thermal behavior of the counter-rotating reactor rings and to assess the degree of flow control required for the CR5 concept.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1790 ◽  
Author(s):  
Baglan Bakbolat ◽  
Chingis Daulbayev ◽  
Fail Sultanov ◽  
Renat Beissenov ◽  
Arman Umirzakov ◽  
...  

The growth of industrialization, which is forced to use non-renewable energy sources, leads to an increase in environmental pollution. Therefore, it is necessary not only to reduce the use of fossil fuels to meet energy needs but also to replace it with cleaner fuels. Production of hydrogen by splitting water is considered one of the most promising ways to use solar energy. TiO2 is an amphoteric oxide that occurs naturally in several modifications. This review summarizes recent advances of doped TiO2-based photocatalysts used in hydrogen production and the degradation of organic pollutants in water. An intense scientific and practical interest in these processes is aroused by the fact that they aim to solve global problems of energy conservation and ecology.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Michael Epstein ◽  
Irina Vishnevetsky ◽  
Alexander Berman

The carboreduction in SnO2 to produce Sn and its hydrolysis with steam to generate hydrogen were studied. The SnO2/C/Sn system has several advantages compared with the most advanced cycle considered so far, which is the ZnO/C/Zn system. The most significant one is the lower reduction temperatures (850–900°C for the SnO2 versus 1100–1150°C for the ZnO). The rate of carbothermal reduction was studied experimentally. SnO2 powder (300 mesh, 99.9% purity) was reduced with beech charcoal and graphite using a thermogravimetric analysis apparatus and fixed bed flow reactor at a temperature range of 800–1000°C. Optimal temperature range for the reduction with beech charcoal is 875–900°C. The reaction time needed to reach conversion of SnO2 close to 100% is 5–10 min in this temperature range. The transmission electron microscopy results show that after cooling, the product of carboreduction contains mainly metallic Sn with a particle size of 1–3 μm. The hydrolysis step is crucial to the success of the entire cycle. Reactions between the steam and solid tin having as powder structure similar to the reduced one were performed at a temperature range of 350–600°C. Results of both the reduction and hydrolysis reactions are presented in addition to thermodynamic analysis of this cycle.


2008 ◽  
Vol 59 (4) ◽  
Author(s):  
Fred Starr ◽  
Calin-Cristian Cormos ◽  
Evangelos Tzimas ◽  
Stathis Peteves

A hydrogen energy system will require the production of hydrogen from coal-based gasification plants and its transmission through long distance pipelines at 70 � 100 bar. To overcome some problems of current gasifiers, which are limited in pressure capability, two options are explored, in-plant compression of the syngas and compression of the hydrogen at the plant exit. It is shown that whereas in-plant compression using centrifugal machines is practical, this is not a solution when compressing hydrogen at the plant exit. This is because of the low molecular weight of the hydrogen. It is also shown that if centrifugal compressors are to be used in a pipeline system, pressure drops will need to be restricted as even an advanced two-stage centrifugal compressor will be limited to a pressure ratio of 1.2. High strength steels are suitable for the in-plant compressor, but aluminium alloy will be required for a hydrogen pipeline compressor.


Sign in / Sign up

Export Citation Format

Share Document