Two Dimensional and Plate Bending Applications

Author(s):  
R. R. Wilson
2003 ◽  
Vol 70 (5) ◽  
pp. 696-707 ◽  
Author(s):  
C. Hwu

Based upon the knowledge of the Stroh formalism and the Lekhnitskii formalism for two-dimensional anisotropic elasticity as well as the complex variable formalism developed by Lekhnitskii for plate bending problems, in this paper a Stroh-like formalism for the bending theory of anisotropic plates is established. The key feature that makes the Stroh formalism more attractive than the Lekhnitskii formalism is that the former possesses the eigenrelation that relates the eigenmodes of stress functions and displacements to the material properties. To retain this special feature, the associated eigenrelation and orthogonality relation have also been obtained for the present formalism. By intentional rearrangement, this new formalism and its associated relations look almost the same as those for the two-dimensional problems. Therefore, almost all the techniques developed for the two-dimensional problems can now be applied to the plate bending problems. Thus, many unsolved plate bending problems can now be solved if their corresponding two-dimensional problems have been solved successfully. To illustrate this benefit, two simple examples are shown in this paper. They are anisotropic plates containing elliptic holes or inclusions subjected to out-of-plane bending moments. The results are simple, exact and general. Note that the anisotropic plates treated in this paper consider only the homogeneous anisotropic plates. If a composite laminate is considered, it should be a symmetric laminate to avoid the coupling between stretching and bending behaviors.


2002 ◽  
Vol 18 (3) ◽  
pp. 109-118 ◽  
Author(s):  
M.C. Hsieh ◽  
Chyanbin Hwu

AbstractBased upon our recent development of Stroh-like forma lism for symmetric/unsymmetric laminates, most of the relations for bending problems can be organized into the forms of Stroh formalism for two-dimensional problems. Through the use of Stroh-like formalism, the fundamental elasticity matrices Ni, S, H and L appear frequently in the real form solutions of plate bending problems. Therefore, the determination of these matrices becomes important in the analysis of plate bending problems. In this paper, by following the approach for two-dimensional problems, we obtain the explicit expressions of the fundamental elasticity matrices for symmetric and unsymmetric laminates, which are all expressed in terms of the extensional, bending and coupling stiffnesses of the composite laminates.


2019 ◽  
Vol 46 (2) ◽  
pp. 147-155
Author(s):  
Taras Dalyak

The problem of interaction of two parallel shifted cracks in plate bending is considered. The cracks closure has been investigated in the classical two-dimensional statement, using the model of smooth contact along a line. The influence of the relative position of cracks and of the contact of their edges on the forces and moment intensity factors has been studied by the singular integral equations method.


2015 ◽  
Vol 2015.68 (0) ◽  
pp. 75-76
Author(s):  
Yuanming Xu ◽  
Dedi SURYADI ◽  
Yutaro SHIMODA ◽  
Nao-Aki NODA ◽  
Yosikazu SANO

1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Sign in / Sign up

Export Citation Format

Share Document