Polar Decomposition and Finite Rotation Vector in First — Order Finite Elastic Strain Shell Theory

Author(s):  
R. Schmidt
Author(s):  
U. Yuceoglu ◽  
V. O¨zerciyes

This study is concerned with the “Free Asymmetric Vibrations of Composite Full Circular Cylindrical Shells Stiffened by a Bonded Central Shell Segment.” The base shell is made of an orthotropic “full” circular cylindrical shell reinforced and/or stiffened by an adhesively bonded dissimilar, orthotropic “full” circular cylindrical shell segment. The stiffening shell segment is located at the mid-center of the composite system. The theoretical analysis is based on the “Timoshenko-Mindlin-(and Reissner) Shell Theory” which is a “First Order Shear Deformation Shell Theory (FSDST).” Thus, in both “base (or lower) shell” and in the “upper shell” segment, the transverse shear deformations and the extensional, translational and the rotary moments of inertia are taken into account in the formulation. In the very thin and linearly elastic adhesive layer, the transverse normal and shear stresses are accounted for. The sets of the dynamic equations, stress-resultant-displacement equations for both shells and the in-between adhesive layer are combined and manipulated and are finally reduced into a ”Governing System of the First Order Ordinary Differential Equations” in the “state-vector” form. This system is integrated by the “Modified Transfer Matrix Method (with Chebyshev Polynomials).” Some asymmetric mode shapes and the corresponding natural frequencies showing the effect of the “hard” and the “soft” adhesive cases are presented. Also, the parametric study of the “overlap length” (or the bonded joint length) on the natural frequencies in several modes is considered and plotted.


1997 ◽  
Vol 50 (8) ◽  
pp. 431-444 ◽  
Author(s):  
K. M. Liew ◽  
C. W. Lim ◽  
S. Kitipornchai

This review article documents recent developments in the free vibration analysis of thin, moderately thick, and thick shallow shells. An introductory review of the studies in Kirchhoff-Love classical thin shell theory is given. The development of studies in moderately thick shells incorporating the effects of transverse shear deformation and rotary inertia is detailed. This review article mainly focuses on research advances in vibration studies since the 1970s using the classical Kirchhoff-Love, first-order, and higher-order theories. The validity and range of applicability of these theories are examined. There are 163 references listed at the end of the article.


1972 ◽  
Vol 39 (4) ◽  
pp. 1085-1090 ◽  
Author(s):  
J. G. Simmonds ◽  
D. A. Danielson

A general nonlinear theory for thin shells of arbitrary midsurface geometry is formulated in terms of a finite rotation vector and a stress-function vector. Compatibility equations, equilibrium equations, and boundary conditions are derived which are valid for shells undergoing arbitrarily large rotations and strains. For problems admitting a potential energy functional, a variational principle is formulated. The simplifications implied by small extensional strains are discussed. The theory contains, as special cases, Reissner’s equations for the axisymmetric deformation of shells of revolution, and the Sanders-Koiter linear shell theory.


2016 ◽  
Vol 62 ◽  
pp. 433-445
Author(s):  
A. J. Morris

Leslie Morley's research focused on modelling structural behaviour, with particular emphasis on plates and shells. He developed the Morley shell equation, which has been acknowledged as the simplest equation consistent with first-order shell theory. As the finite element method rose to prominence he developed elements for both plates and shells. He then worked on developing a set of new finite elements able to handle complex shell behaviour in both the linear and nonlinear regimes. He also observed that it was possible to augment the finite element solution by using singular solutions to calculate the stress intensity factor at a crack tip in a thin-walled metal structure and thereby to compute crack propagation rates. In undertaking his research Morley probed into the mathematical and physical depths of the problems he confronted, and produced some outstanding and significant results.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Peng Shi ◽  
Rakesh K. Kapania ◽  
C. Y. Dong

The free vibration of curvilinearly stiffened shallow shells is investigated by the Ritz method. Based on the first-order shear deformation shell theory and three-dimensional (3D) curved beam theory, the strain and kinetic energies of the stiffened shells are introduced. The stiffener can be placed anywhere within the shell, without the need for having the stiffener and shell element nodes coincide. Numerical results with different geometrical shells and boundary conditions and different stiffener locations and curvatures are analyzed to verify the feasibility of the presented Ritz method for solving the problems. The results show good agreement with those using other methods, e.g., using a converged set of results obtained by Nastran.


Sign in / Sign up

Export Citation Format

Share Document