Specificity of the Intestinal Lactoferrin Receptor

Milk Proteins ◽  
1989 ◽  
pp. 76-82
Author(s):  
L. A. Davidson ◽  
B. Lönnerdal
Keyword(s):  
2017 ◽  
Vol 95 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Yoshiharu Takayama ◽  
Reiji Aoki ◽  
Ryo Uchida ◽  
Atsushi Tajima ◽  
Ayako Aoki-Yoshida

Lactoferrin exerts its biological activities by interacting with receptors on target cells, including LDL receptor-related protein-1 (LRP-1/CD91), intelectin-1 (omentin-1), and Toll-like receptor 4 (TLR4). However, the effects mediated by these receptors are not sufficient to fully explain the many functions of lactoferrin. C-X-C-motif cytokine receptor 4 (CXCR4) is a ubiquitously expressed G-protein coupled receptor for stromal cell-derived factor-1 (SDF-1/CXCL12). Lactoferrin was found to be as capable as SDF-1 in blocking infection by an HIV variant that uses CXCR4 as a co-receptor (X4-tropic HIV), suggesting that lactoferrin interacts with CXCR4. We addressed whether CXCR4 acts as a lactoferrin receptor using HaCaT human keratinocytes and Caco-2 human intestinal cells. We found that bovine lactoferrin interacted with CXCR4-containing lipoparticles, and that this interaction was not antagonized by SDF-1. In addition, activation of Akt in response to lactoferrin was abrogated by AMD3100, a small molecule inhibitor of CXCR4, or by a CXCR4-neutralizing antibody, suggesting that CXCR4 functions as a lactoferrin receptor able to mediate activation of the PI3K–Akt signaling pathway. Lactoferrin stimulation mimicked many aspects of SDF-1-induced CXCR4 activity, including receptor dimerization, tyrosine phosphorylation, and ubiquitination. Cycloheximide chase assays indicated that turnover of CXCR4 was accelerated in response to lactoferrin. These results indicate that CXCR4 is a potent lactoferrin receptor that mediates lactoferrin-induced activation of Akt signaling.


2017 ◽  
Vol 197 (4S) ◽  
Author(s):  
Zengjun Wang ◽  
Pengqi Wang ◽  
Bianjiang Liu ◽  
Xiaobin Niu ◽  
Shifeng Su ◽  
...  

1989 ◽  
Vol 35 (3) ◽  
pp. 409-415 ◽  
Author(s):  
Anthony B. Schryvers ◽  
B. Craig Lee

Intact cells of several bacterial species were tested for their ability to bind human transferrin and lactoferrin by a solid-phase binding assay using horseradish peroxidase conjugated transferrin and lactoferrin. The ability to bind lactoferrin was detected in all isolates of Neisseria and Branhamella catarrhalis but not in isolates of Escherichia coli or Pseudomonas aeruginosa. Transferrin-binding activity was similarly detected in most isolates of Neisseria and Branhamella but not in E. coli or P. aeruginosa. The expression of transferrin- and lactoferrin-binding activity was induced by addition of ethylenediamine di-o-phenylacetic acid and reversed by excess FeCl3, indicating regulation by the level of available iron in the medium. The transferrin receptor was specific for human transferrin and the lactoferrin receptor had a high degree of specificity for human lactoferrin in all species tested. The transferrin- and lactoferrin-binding proteins were identified after affinity isolation using biotinylated human transferrin or lactoferrin and streptavidin–agarose. The lactoferrin-binding protein was identified as a 105-kilodalton protein in all species tested. Affinity isolation with biotinylated transferrin yielded two or more proteins in all species tested. A high molecular mass protein was observed in all isolates, and was of similar size (approximately 98 kilodaltons) in all species of Neisseria but was larger (105 kilodaltons) in B. catarrhalis.Key words: iron, Neisseria, transferrin, lactoferrin, receptor.


BioMetals ◽  
2014 ◽  
Vol 27 (5) ◽  
pp. 1031-1038 ◽  
Author(s):  
Caitlin Cooper ◽  
Eric Nonnecke ◽  
Bo Lönnerdal ◽  
James Murray

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2843
Author(s):  
Małgorzata Jamka ◽  
Nina Kaczmarek ◽  
Edyta Mądry ◽  
Patrycja Krzyżanowska-Jankowska ◽  
Joanna Bajerska ◽  
...  

This study aimed to evaluate the association of genetic variants in lactoferrin (LTF) metabolism-related genes with the prevalence of metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). In total, 161 MHO and 291 MUHO subjects were recruited to the study. The following polymorphisms were genotyped: low-density lipoprotein receptor-related protein (LRP) 2 rs2544390, LRP1 rs4759277, LRP1 rs1799986, LTF rs1126477, LTF rs2239692 and LTF rs1126478. We found significant differences in the genotype frequencies of LTF rs2239692 between MHO and MUHO subjects, with the CT variant associated with lower odds of developing metabolic syndrome than the TT variant. In the total population, significant differences in body weight and waist circumference (WC) were identified between LTF rs1126477 gene variants. A similar association with WC was observed in MUHO subjects, while significant differences in body mass index and low-density lipoprotein cholesterol levels were discovered between LTF rs1126477 gene variants in MHO subjects. Besides, there were significant differences in diastolic blood pressure between LRP1 rs1799986 gene variants in MUHO subjects, as well as in WC and high-density lipoprotein cholesterol levels between LRP1 rs4759277 gene variants in MHO subjects. In conclusion, selected lactoferrin and lactoferrin receptor-related gene variants may be associated with the prevalence of metabolically healthy or metabolically unhealthy obesity.


Biochemistry ◽  
2001 ◽  
Vol 40 (51) ◽  
pp. 15771-15779 ◽  
Author(s):  
Yasushi A. Suzuki ◽  
Kouichirou Shin ◽  
Bo Lönnerdal

2014 ◽  
Vol 85 (6) ◽  
pp. e198-e204 ◽  
Author(s):  
Kazuhisa Ouhara ◽  
Irma Josefina Savitri ◽  
Tsuyoshi Fujita ◽  
Mizuho Kittaka ◽  
Mikihito Kajiya ◽  
...  

2010 ◽  
Vol 82 (2) ◽  
pp. 429-436 ◽  
Author(s):  
Bo Lönnerdal

Iron is known to be absorbed from foods in two major forms, heme iron and non-heme iron. Iron status as well as dietary factors known to affect iron absorption has limited effect on heme iron absorption, whereas inhibitors and enhancers of iron absorption have pronounced effects on non-heme iron absorption. The enterocyte transporter for non-heme iron, DMT1, is strongly up-regulated during iron deficiency and down-regulated during iron overload. A transporter for heme iron, HCP1, was recently characterized and is present on the apical membrane of enterocytes. Two other pathways for iron absorption have been discovered and may serve to facilitate uptake of iron from two unique iron-binding proteins, lactoferrin and ferritin. Lactoferrin is an iron-binding protein in human milk and known to survive proteolytic digestion. It mediates iron uptake in breast-fed infants through endocytosis via a specific lactoferrin receptor (LfR). Recently, lactoferrin has become popular as a food additive and may enhance iron status in several age groups. Ferritin is present in meat, but also in plants. The ferritin content of plants can be enhanced by conventional breeding or genetic engineering, and thereby increase iron intake of populations consuming plant-based diets. Ferritin is a bioavailable source of iron, as shown in recent human studies. Ferritin can be taken up by intestinal cells via endocytosis, suggesting a receptor-mediated mechanism.


Urology ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. S86
Author(s):  
Z. Wang ◽  
W. Zhang ◽  
N. Feng ◽  
N. Song ◽  
L. Hua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document