Qualitative Behavior of the Solutions of Periodic First Order Scalar Differential Equations with Strictly Convex Coercive Nonlinearity

Author(s):  
J. Mawhin
Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 934
Author(s):  
Shyam Sundar Santra ◽  
Khaled Mohamed Khedher ◽  
Kamsing Nonlaopon ◽  
Hijaz Ahmad

The oscillation of impulsive differential equations plays an important role in many applications in physics, biology and engineering. The symmetry helps to deciding the right way to study oscillatory behavior of solutions of impulsive differential equations. In this work, several sufficient conditions are established for oscillatory or asymptotic behavior of second-order neutral impulsive differential systems for various ranges of the bounded neutral coefficient under the canonical and non-canonical conditions. Here, one can see that if the differential equations is oscillatory (or converges to zero asymptotically), then the discrete equation of similar type do not disturb the oscillatory or asymptotic behavior of the impulsive system, when impulse satisfies the discrete equation. Further, some illustrative examples showing applicability of the new results are included.


2004 ◽  
Vol 40 (5) ◽  
pp. 703-710 ◽  
Author(s):  
D. R. Bojovic ◽  
B. S. Jovanovic ◽  
P. P. Matus

1990 ◽  
Vol 45 (11-12) ◽  
pp. 1219-1229 ◽  
Author(s):  
D.-A. Becker ◽  
E. W. Richter

AbstractA generalization of the usual method of similarity analysis of differential equations, the method of partially invariant solutions, was introduced by Ovsiannikov. The degree of non-invariance of these solutions is characterized by the defect of invariance d. We develop an algorithm leading to partially invariant solutions of quasilinear systems of first-order partial differential equations. We apply the algorithm to the non-linear equations of the two-dimensional non-stationary ideal MHD with a magnetic field perpendicular to the plane of motion.


Sign in / Sign up

Export Citation Format

Share Document