The Permutation Group and the Coupling of n Spin- $$ \frac{1}{2} $$ Angular Momenta

Author(s):  
J. D. Louck ◽  
L. C. Biedenharn
2013 ◽  
Vol 50 (2) ◽  
pp. 258-265
Author(s):  
Pál Hegedűs

In this paper we analyse the natural permutation module of an affine permutation group. For this the regular module of an elementary Abelian p-group is described in detail. We consider the inequivalent permutation modules coming from nonconjugate complements. We prove their strong structural similarity well exceeding the fact that they have equal Brauer characters.


2021 ◽  
Author(s):  
Babak Bahari ◽  
Liyi Hsu ◽  
Si Hui Pan ◽  
Daryl Preece ◽  
Abdoulaye Ndao ◽  
...  

2021 ◽  
pp. 1-40
Author(s):  
NICK GILL ◽  
BIANCA LODÀ ◽  
PABLO SPIGA

Abstract Let G be a permutation group on a set $\Omega $ of size t. We say that $\Lambda \subseteq \Omega $ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $\Lambda $ . We define the height of G to be the maximum size of an independent set, and we denote this quantity $\textrm{H}(G)$ . In this paper, we study $\textrm{H}(G)$ for the case when G is primitive. Our main result asserts that either $\textrm{H}(G)< 9\log t$ or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\textrm{I}(G)$ , the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either $\textrm{I}(G)<7\log t$ or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yinghui Guo ◽  
Shicong Zhang ◽  
Mingbo Pu ◽  
Qiong He ◽  
Jinjin Jin ◽  
...  

AbstractWith inherent orthogonality, both the spin angular momentum (SAM) and orbital angular momentum (OAM) of photons have been utilized to expand the dimensions of quantum information, optical communications, and information processing, wherein simultaneous detection of SAMs and OAMs with a single element and a single-shot measurement is highly anticipated. Here, a single azimuthal-quadratic phase metasurface-based photonic momentum transformation (PMT) is illustrated and utilized for vortex recognition. Since different vortices are converted into focusing patterns with distinct azimuthal coordinates on a transverse plane through PMT, OAMs within a large mode space can be determined through a single-shot measurement. Moreover, spin-controlled dual-functional PMTs are proposed for simultaneous SAM and OAM sorting, which is implemented by a single spin-decoupled metasurface that merges both the geometric phase and dynamic phase. Interestingly, our proposed method can detect vectorial vortices with both phase and polarization singularities, as well as superimposed vortices with a certain interval step. Experimental results obtained at several wavelengths in the visible band exhibit good agreement with the numerical modeling. With the merits of ultracompact device size, simple optical configuration, and prominent vortex recognition ability, our approach may underpin the development of integrated and high-dimensional optical and quantum systems.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
E. S. Sedov ◽  
V. A. Lukoshkin ◽  
V. K. Kalevich ◽  
P. G. Savvidis ◽  
A. V. Kavokin
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Randy Lemons ◽  
Wei Liu ◽  
Josef C. Frisch ◽  
Alan Fry ◽  
Joseph Robinson ◽  
...  

AbstractThe structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as amplitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We demonstrate a laser architecture based on coherent beam combination offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.


2020 ◽  
Vol 23 (3) ◽  
pp. 393-397
Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractLet G be a finite transitive permutation group of degree n, with point stabilizer {H\neq 1} and permutation character π. For every positive integer t, we consider the generalized character {\psi_{t}=\rho_{G}-t(\pi-1_{G})}, where {\rho_{G}} is the regular character of G and {1_{G}} the 1-character. We give necessary and sufficient conditions on t (and G) which guarantee that {\psi_{t}} is a character of G. A necessary condition is that {t\leq\min\{n-1,\lvert H\rvert\}}, and it turns out that {\psi_{t}} is a character of G for {t=n-1} resp. {t=\lvert H\rvert} precisely when G is 2-transitive resp. a Frobenius group.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Maciej Kolanowski ◽  
Jerzy Lewandowski

Abstract We generalize a notion of ‘conserved’ charges given by Wald and Zoupas to the asymptotically de Sitter spacetimes. Surprisingly, our construction is less ambiguous than the one encountered in the asymptotically flat context. An expansion around exact solutions possessing Killing vectors provides their physical meaning. In particular, we discuss a question of how to define energy and angular momenta of gravitational waves propagating on Kottler and Carter backgrounds. We show that obtained expressions have a correct limit as Λ → 0. We also comment on the relation between this approach and the one based on the canonical phase space of initial data at ℐ+.


Sign in / Sign up

Export Citation Format

Share Document