On the Influence of Distribution of Observations on Accuracy of Orbital Elements of the Earth’s Artificial Satellites

1970 ◽  
pp. 24-27
Author(s):  
A. S. Sochilina
1966 ◽  
Vol 25 ◽  
pp. 363-371
Author(s):  
P. Sconzo

In this paper an orbit computation program for artificial satellites is presented. This program is operational and it has already been used to compute the orbits of several satellites.After an introductory discussion on the subject of artificial satellite orbit computations, the features of this program are thoroughly explained. In order to achieve the representation of the orbital elements over short intervals of time a drag-free perturbation theory coupled with a differential correction procedure is used, while the long range behavior is obtained empirically. The empirical treatment of the non-gravitational effects upon the satellite motion seems to be very satisfactory. Numerical analysis procedures supporting this treatment and experience gained in using our program are also objects of discussion.


1975 ◽  
Vol 26 ◽  
pp. 235-240
Author(s):  
Y. Kozai

AbstractFor observed positions ofi artificial satellites and their orbital elements, many kinds of reference coordinate systems have been available. Some are more convenient for reductions of observations, while others are more convenient for analyzing the orbital elements for geodesy. In this review paper, perturbations produced owing to the adoption of diffrent kinds of reference systems are discussed.


2015 ◽  
Vol 24 (08) ◽  
pp. 1550067 ◽  
Author(s):  
L. Iorio

The orbital dynamics of a test particle moving in the nonspherically symmetric field of a rotating oblate primary is impacted also by certain indirect, mixed effects arising from the interplay of the different Newtonian and post-Newtonian accelerations which induce known direct perturbations. We systematically calculate the indirect gravitoelectromagnetic shifts per orbit of the Keplerian orbital elements of the test particle arising from the crossing among the first even zonal harmonic J2 of the central body and the post-Newtonian static and stationary components of its gravitational field. We also work out the Newtonian shifts per orbit of order [Formula: see text], and the direct post-Newtonian gravitoelectric effects of order J2c-2 arising from the equations of motion. In the case of both the indirect and direct gravitoelectric J2c-2 shifts, our calculation holds for an arbitrary orientation of the symmetry axis of the central body. We yield numerical estimates of their relative magnitudes for systems ranging from Earth's artificial satellites to stars orbiting supermassive black holes. As far as their measurability is concerned, highly elliptical orbital configuration are desirable.


1966 ◽  
Vol 25 ◽  
pp. 345-354 ◽  
Author(s):  
L. Sehnal

The components of the pressure of the radiation, reflected from the Earth, are derived. The two cases, when the satellite does or does not enter the Earth's shadow are investigated. The components of the disturbing function are derived and can be used in computing the perturbations of the orbital elements by the Lagrangian equations. The results are used for the computation of the changes of the orbital period and some numerical results are given.


2017 ◽  
pp. 53-58 ◽  
Author(s):  
M.M. Martinovic ◽  
S.D. Segan

The report studies some changes in orbital elements of the artificial satellites of Earth under influence of atmospheric drag. In order to develop possibilities of applying the results in many future cases, an analytical interpretation of the orbital element perturbations is given via useful, but very long expressions. The development is based on the TD88 air density model, recently upgraded with some additional terms. Some expressions and formulae were developed by the computer algebra system Mathematica and tested in some hypothetical cases. The results have good agreement with iterative (numerical) approach.


2018 ◽  
Vol 3 (2) ◽  
pp. 353-374 ◽  
Author(s):  
M. K. Ammar ◽  
M. R. Amin ◽  
M.H.M. Hassan

AbstractThis paper presents an analytical method to determine the rise-set times of satellite-satellite visibility periods in different orbits. The Visibility function in terms of the orbital elements of the two satellites versus the time were derived explicitly up to e4. The line-of-sight corrected for Earth Oblateness up to J2, were considered as a perturbation to the orbital elements. The visibility intervals of the satellites were calculated for some numerical examples in order to test the results of the analytical work.


2018 ◽  
Vol 3 (2) ◽  
pp. 339-352 ◽  
Author(s):  
M. K. Ammar ◽  
M. R. Amin ◽  
M.H.M. Hassan

AbstractIn a previous (herein referred to as Ammar, Amin and Hassan Paper [1]) the statement of the problem was formulated and the basic visibility function between two satellites in terms of the orbital elements and time were derived. In this paper the perturbing effect due to drag force on the visibility function were derived explicitly up to O(e4), by using Taylor’s expansion for the visibility function about certain epoch. We determine the rise and set times of the satellites through the sign of the visibility function. Numerical examples were worked out for some satellites in order to check the validity of the work.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jean Paulo dos Santos Carvalho ◽  
Rodolpho Vilhena de Moraes ◽  
Antônio Fernando Bertachini de Almeida Prado

A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA) and Jupiter Icy Moon Explorer (JUICE, ESA). In this paper, we search for orbits around Europa with long lifetimes. Here, we develop the disturbing potential in closed form up to the second order to analyze the effects caused on the orbital elements of an artificial satellite around Europa. The equations of motion are developed in closed form to avoid expansions in power series of the eccentricity and inclination. We found polar orbits with long lifetimes. This type of orbits reduces considerably the maintenance cost of the orbit. We show a formula to calculate the critical inclination of orbits around Europa taking into account the disturbing potential due to the nonspherical shape of the central body and the perturbation of the third body.


1999 ◽  
Vol 173 ◽  
pp. 81-86
Author(s):  
S. Berinde

AbstractThe first part of this paper gives a recent overview (until July 1st, 1998) of the Near-Earth Asteroids (NEAs) database stored at Minor Planet Center. Some statistical interpretations point out strong observational biases in the population of discovered NEAs, due to the preferential discoveries, depending on the objects’ distances and sizes. It is known that many newly discovered NEAs have no accurately determinated orbits because of the lack of observations. Consequently, it is hard to speak about future encounters and collisions with the Earth in terms of mutual distances between bodies. Because the dynamical evolution of asteroids’ orbits is less sensitive to the improvement of their orbital elements, we introduced a new subclass of NEAs named Earth-encounter asteroids in order to describe more reliably the potentially dangerous bodies as impactors with the Earth. So, we pay attention at those asteroids having an encounter between their orbits and that of the Earth within 100 years, trying to classify these encounters.


Sign in / Sign up

Export Citation Format

Share Document