Benchmark study and industrial application

Author(s):  
Kai Zhang
2021 ◽  
Author(s):  
S. Badia ◽  
A. Martín ◽  
J. Principe ◽  
C. Soriano ◽  
R. Rossi

This document describes the industrial application, on which the developments of the project are implemented, and the CFD set-up. The developments are implemented over six analysis cases with increasing complexity starting from a 2D geometry with mean wind inflow to a 3D geometry with turbulent inflow and real-time shape optimization. The application represents the CAARC tall building model, which has served as a benchmark model for many studies since the 1970’s when it was first developed. Base moments (bending and torsional moments) of the building are extracted for validation by comparison of the results with the benchmark study. Page 3 of 19 Deliverable 7.1


2021 ◽  
Author(s):  
A, Michalski ◽  
D. Andersson ◽  
R. Rossi ◽  
C. Soriano

This document describes the industrial application, on which the developments of the project are implemented, and the CFD set-up. The developments are implemented over six analysis cases with increasing complexity starting from a 2D geometry with mean wind inflow to a 3D geometry with turbulent inflow and real-time shape optimization. The application represents the CAARC tall building model, which has served as a benchmark model for many studies since the 1970’s when it was first developed. Base moments (bending and torsional moments) of the building are extracted for validation by comparison of the results with the benchmark study. Page 3 of 19 Deliverable 7.1


2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


Sign in / Sign up

Export Citation Format

Share Document