Novel Insight into Engine Near-Wall Flows and Wall Heat Transfer Using Direct Numerical Simulations and High-Fidelity Experiments

Author(s):  
Karri Keskinen ◽  
George Giannakopoulos ◽  
Michele Bolla ◽  
Jann Koch ◽  
Yuri M. Wright ◽  
...  
Author(s):  
H. Lüdeke ◽  
R. von Soldenhoff

AbstractTo determine allowable tolerances between successive suction panels at hybrid laminar wings with suction surfaces, direct numerical simulations of Tollmien–Schlichting waves over different steps are carried out for realistic suction rates on a wind tunnel configuration. Simulations at given suction panel positions over forward and backward facing steps are carried out by the use of a high-order method for the direct simulation of Tollmien–Schlichting wave growth. Comparisons between high-fidelity direct numerical simulations and quick linear stability calculations have shown capabilities and limits of the well-validated linear stability theory design approach.


2019 ◽  
Vol 881 ◽  
pp. 1073-1096 ◽  
Author(s):  
Andreas D. Demou ◽  
Dimokratis G. E. Grigoriadis

Rayleigh–Bénard convection in water is studied by means of direct numerical simulations, taking into account the variation of properties. The simulations considered a three-dimensional (3-D) cavity with a square cross-section and its two-dimensional (2-D) equivalent, covering a Rayleigh number range of $10^{6}\leqslant Ra\leqslant 10^{9}$ and using temperature differences up to 60 K. The main objectives of this study are (i) to investigate and report differences obtained by 2-D and 3-D simulations and (ii) to provide a first appreciation of the non-Oberbeck–Boussinesq (NOB) effects on the near-wall time-averaged and root-mean-squared (r.m.s.) temperature fields. The Nusselt number and the thermal boundary layer thickness exhibit the most pronounced differences when calculated in two dimensions and three dimensions, even though the $Ra$ scaling exponents are similar. These differences are closely related to the modification of the large-scale circulation pattern and become less pronounced when the NOB values are normalised with the respective Oberbeck–Boussinesq (OB) values. It is also demonstrated that NOB effects modify the near-wall temperature statistics, promoting the breaking of the top–bottom symmetry which characterises the OB approximation. The most prominent NOB effect in the near-wall region is the modification of the maximum r.m.s. values of temperature, which are found to increase at the top and decrease at the bottom of the cavity.


2010 ◽  
Vol 660 ◽  
pp. 1-4 ◽  
Author(s):  
B. STEVENS

Mixing processes at cloud boundaries are thought to play a critical role in determining cloud lifetime, spatial extent and cloud microphysical structure. High-fidelity direct numerical simulations by Mellado (J. Fluid Mech., 2010, this issue, vol. 660, pp. 5–36) show, for the first time, the character and potency of a curious instability that may arise as a result of molecular mixing processes at cloud boundaries, an instability which until now has been thought by many to control the distribution of climatologically important cloud regimes.


2012 ◽  
Vol 693 ◽  
pp. 28-56 ◽  
Author(s):  
Suman Muppidi ◽  
Krishnan Mahesh

AbstractDirect numerical simulations are used to study the laminar to turbulent transition of a Mach 2.9 supersonic flat plate boundary layer flow due to distributed surface roughness. Roughness causes the near-wall fluid to slow down and generates a strong shear layer over the roughness elements. Examination of the mean wall pressure indicates that the roughness surface exerts an upward impulse on the fluid, generating counter-rotating pairs of streamwise vortices underneath the shear layer. These vortices transport near-wall low-momentum fluid away from the wall. Along the roughness region, the vortices grow stronger, longer and closer to each other, and result in periodic shedding. The vortices rise towards the shear layer as they advect downstream, and the resulting interaction causes the shear layer to break up, followed quickly by a transition to turbulence. The mean flow in the turbulent region shows a good agreement with available data for fully developed turbulent boundary layers. Simulations under varying conditions show that, where the shear is not as strong and the streamwise vortices are not as coherent, the flow remains laminar.


2021 ◽  
Author(s):  
Vishwas Verma ◽  
Kiran Manoharan ◽  
Jaydeep Basani ◽  
Dustin Brandt

Abstract Accurate numerical predictions of surface heat flux on combustor liners in the presence of effusion cooling involve appropriate resolution of turbulent boundary layers and mixing of two different streams. Precise surface heat flux and wall temperature predictions are necessary for the optimal design of combustor liners to avoid burnout and damage to the combustor. Reynolds Average Navier Stokes (RANS) model has shown superior wall heat transfer predictions for steady flows; however, in combustor liners involving complex effusion jet mixing patterns, it fails. On the other hand, Large Eddy Simulation (LES) can capture to a good extent core flow mixing in such situations, but it requires very high-resolution near-wall meshes for accurate surface heat flux predictions. To overcome these issues, a hybrid model using RANS in the near-wall region and LES in the core region have been proposed for better wall heat transfer predictions. In this study, a numerical analysis is carried out to test the capability of RANS, LES and hybrid models (SBES, WMLES) for wall heat transfer predictions. The computational setup is a flat plate where freestream high-speed flow approaches a thirty-five degree inclined jet. The study is divided into two regions of interest, one before the jet freestream interaction and another post-interaction. We demonstrate with the SBES approach, surface heat flux can be predicted to much better agreement with the test data in both the regions of interest. Also, it is shown that such results can be obtained with much coarser mesh resolution, hence less computational cost, with hybrid models than pure LES.


Sign in / Sign up

Export Citation Format

Share Document