Mesoderm Development

Author(s):  
José A. Campos-Ortega ◽  
Volker Hartenstein
Keyword(s):  
2016 ◽  
Vol 414 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Christine D. Reid ◽  
Aaron B. Steiner ◽  
Sergey Yaklichkin ◽  
Qun Lu ◽  
Shouwen Wang ◽  
...  

2017 ◽  
Vol 40 (4) ◽  
pp. 331-341.e4 ◽  
Author(s):  
Vinay Bulusu ◽  
Nicole Prior ◽  
Marteinn T. Snaebjornsson ◽  
Andreas Kuehne ◽  
Katharina F. Sonnen ◽  
...  

Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 655-666 ◽  
Author(s):  
H.T. Broihier ◽  
L.A. Moore ◽  
M. Van Doren ◽  
S. Newman ◽  
R. Lehmann

In Drosophila as well as many vertebrate systems, germ cells form extraembryonically and migrate into the embryo before navigating toward gonadal mesodermal cells. How the gonadal mesoderm attracts migratory germ cells is not understood in any system. We have taken a genetic approach to identify genes required for germ cell migration in Drosophila. Here we describe the role of zfh-1 in germ cell migration to the gonadal mesoderm. In zfh-1 mutant embryos, the initial association of germ cells and gonadal mesoderm is blocked. Loss of zfh-1 activity disrupts the development of two distinct mesodermal populations: the caudal visceral mesoderm and the gonadal mesoderm. We demonstrate that the caudal visceral mesoderm facilitates the migration of germ cells from the endoderm to the mesoderm. Zfh-1 is also expressed in the gonadal mesoderm throughout the development of this tissue. Ectopic expression of Zfh-1 is sufficient to induce additional gonadal mesodermal cells and to alter the temporal course of gene expression within these cells. Finally, through analysis of a tinman zfh-1 double mutant, we show that zfh-1 acts in conjunction with tinman, another homeodomain protein, in the specification of lateral mesodermal derivatives, including the gonadal mesoderm.


Development ◽  
1994 ◽  
Vol 120 (5) ◽  
pp. 1137-1150 ◽  
Author(s):  
R. Reuter ◽  
M. Leptin

Two zygotic genes, snail (sna) and twist (twi), are required for mesoderm development, which begins with the formation of the ventral furrow. Both twi and sna are expressed ventrally in the blastoderm, encode transcription factors and promote the invagination of the ventral furrow by activating or repressing appropriate target genes. However, sna and twi alone do not define the position of the ventral furrow, since they are also expressed in ventral cells that do not invaginate. We show that huckebein (hkb) sets the anterior and the posterior borders of the ventral furrow, but acts by different modes of regulation. In the posterior part of the blastoderm, hkb represses the expression of sna in the endodermal primordium (which we suggest to be adjacent to the mesodermal primordium). In the anterior part, hkb antagonizes the activation of target genes by twi and sna. Here, bicoid permits the co-expression of hkb, sna and twi, which are all required for the development of the anterior digestive tract. We suggest that mesodermal fate is determined where sna and twi but not hkb are expressed. Anteriorly hkb together with sna determines endodermal fate, and hkb together with sna and twi are required for foregut development.


Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2583-2592 ◽  
Author(s):  
H.I. Sirotkin ◽  
S.T. Dougan ◽  
A.F. Schier ◽  
W.S. Talbot

In vertebrate embryos, maternal (beta)-catenin protein activates the expression of zygotic genes that establish the dorsal axial structures. Among the zygotically acting genes with key roles in the specification of dorsal axial structures are the homeobox gene bozozok (boz) and the nodal-related (TGF-(beta) family) gene squint (sqt). Both genes are expressed in the dorsal yolk syncytial layer, a source of dorsal mesoderm inducing signals, and mutational analysis has indicated that boz and sqt are required for dorsal mesoderm development. Here we examine the regulatory interactions among boz, sqt and a second nodal-related gene, cyclops (cyc). Three lines of evidence indicate that boz and sqt act in parallel to specify dorsal mesoderm and anterior neuroectoderm. First, boz requires sqt function to induce high levels of ectopic dorsal mesoderm, consistent with sqt acting either downstream or in parallel to boz. Second, sqt mRNA is expressed in blastula stage boz mutants, indicating that boz is not essential for activation of sqt transcription, and conversely, boz mRNA is expressed in blastula stage sqt mutants. Third, boz;sqt double mutants have a much more severe phenotype than boz and sqt single mutants. Double mutants consistently lack the anterior neural tube and axial mesoderm, and ventral fates are markedly expanded. Expression of chordin and noggin1 is greatly reduced in boz;sqt mutants, indicating that the boz and sqt pathways have overlapping roles in activating secreted BMP antagonists. In striking contrast to boz;sqt double mutants, anterior neural fates are specified in boz;sqt;cyc triple mutants. This indicates that cyc represses anterior neural development, and that boz and sqt counteract this repressive function. Our results support a model in which boz and sqt act in parallel to induce dorsalizing BMP-antagonists and to counteract the repressive function of cyc in neural patterning.


Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 115-122 ◽  
Author(s):  
G. Vidricaire ◽  
K. Jardine ◽  
M.W. McBurney

When aggregated and treated with dimethyl sulfoxide (DMSO), P19 embryonal carcinoma cells differentiate into cell types normally derived from the mesoderm and endoderm including epithelium and cardiac and skeletal muscle. The Brachyury gene is expressed transiently in these differentiating cultures several days before the appearance of markers of the differentiated cell types. The expression of Brachyury is not affected by DMSO but is induced by cell aggregation, which requires extracellular calcium. Expression of Brachyury is also induced by various members of the TGF beta family such as activin and bone morphogenetic proteins. D3 is a mutant clone of P19 cells selected for its failure to differentiate when aggregated in DMSO. Aggregated D3 cells express Brachyury mRNA suggesting that the mutation(s) responsible for the phenotype of D3 cells is downstream of the chain of events initiated by Brachyury expression.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Tonis Org ◽  
Dan Duan ◽  
Roberto Ferrari ◽  
Amelie Montel-Hagen ◽  
Ben Van Handel ◽  
...  

Understanding the mechanisms directing mesoderm specification holds a great potential to advance the development of cell-based therapies for cardiovascular and blood disorders. The bHLH transcription factor Scl is known as the master regulator of the hematopoietic fate. We recently discovered that, in addition to its critical function in promoting the establishment of hemogenic endothelium during hematopoietic stem/progenitor cell (HS/PC) development, Scl is also required to repress cardiomyogenesis in endothelium in hematopoietic tissues and endocardium in the heart. However, the mechanisms for the cardiac repression have remained unknown. Using ChIP-sequencing and microarray analysis of Flk+ mesoderm differentiated from mouse ES cells, we show that Scl both directly activates a broad gene regulatory network required for hemogenic endothelium and HS/PC development (e.g. Runx1, cMyb, Lyl1, Mef2C, Sox7 etc.), and directly represses transcriptional regulators required for cardiogenesis (e.g. Gata4, Gata6, Myocd, etc.) and mesoderm development (Eomes, Mixl1, Etv2, etc.). Repression of cardiac and mesodermal programs occurs during a short developmental window through Scl binding to distant enhancers, while binding to hematopoietic regulators extends throughout HS/PC and red blood cell development and encompasses both distant and proximal binding sites. We also discovered that, surprisingly, Scl complex partners Gata 1 and 2 are dispensable for hematopoietic vs. cardiac specification and Scl binding to majority of its target genes. Nevertheless, Gata factors co-operate with Scl to activate selected transcription factors that facilitate HS/PC emergence from hemogenic endothelium. These results denote Scl as a true master regulator of hematopoietic vs. cardiac fate choice and suggest a mechanism by which lineage-specific bHLH factors direct the divergence of competing fates.


Development ◽  
1993 ◽  
Vol 119 (2) ◽  
pp. 419-431 ◽  
Author(s):  
T.J. Lints ◽  
L.M. Parsons ◽  
L. Hartley ◽  
I. Lyons ◽  
R.P. Harvey

We have isolated two murine homeobox genes, Nkx-2.5 and Nkx-2.6, that are new members of a sp sub-family of homeobox genes related to Drosophila NK2, NK3 and NK4/msh-2. In this paper, we focus on the Nkx-2.5 gene and its expression pattern during post-implantation development. Nkx-2.5 transcripts are first detected at early headfold stages in myocardiogenic progenitor cells. Expression preceeds the onset of myogenic differentiation, and continues in cardiomyocytes of embryonic, foetal and adult hearts. Transcripts are also detected in future pharyngeal endoderm, the tissue believed to produce the heart inducer. Expression in endoderm is only found laterally, where it is in direct apposition to promyocardium, suggesting an interaction between the two tissues. After foregut closure, Nkx-2.5 expression in endoderm is limited to the pharyngeal floor, dorsal to the developing heart tube. The thyroid primordium, a derivative of the pharyngeal floor, continues to express Nkx-2.5 after transcript levels diminish in the rest of the pharynx. Nkx-2.5 transcripts are also detected in lingual muscle, spleen and stomach. The expression data implicate Nkx-2.5 in commitment to and/or differentiation of the myocardial lineage. The data further demonstrate that cardiogenic progenitors can be distinguished at a molecular level by late gastrulation. Nkx-2.5 expression will therefore be a valuable marker in the analysis of mesoderm development and an early entry point for dissection of the molecular basis of myogenesis in the heart.


Sign in / Sign up

Export Citation Format

Share Document