The Central Effect of Physostigmine on Blood Pressure and Heart Rate; Possible Cholinerg Aspects of Blood Pressure Regulation

Author(s):  
D. de Wildt ◽  
A. J. Porsius
2006 ◽  
Vol 290 (6) ◽  
pp. H2554-H2559 ◽  
Author(s):  
Ryan M. Fryer ◽  
Pamela A. Rakestraw ◽  
Patricia N. Banfor ◽  
Bryan F. Cox ◽  
Terry J. Opgenorth ◽  
...  

The net contribution of endothelin type A (ETA) and type B (ETB) receptors in blood pressure regulation in humans and experimental animals, including the conscious mouse, remains undefined. Thus we assessed the role of ETA and ETB receptors in the control of basal blood pressure and also the role of ETA receptors in maintaining the hypertensive effects of systemic ETB blockade in telemetry-instrumented mice. Mean arterial pressure (MAP) and heart rate were recorded continuously from the carotid artery and daily (24 h) values determined. At baseline, MAP ranged from 99 ± 1 to 101 ± 1 mmHg and heart rate ranged between 547 ± 15 and 567 ± 19 beats/min ( n = 6). Daily oral administration of the ETB selective antagonist A-192621 [10 mg/kg twice daily] increased MAP to 108 ± 1 and 112 ± 2 mmHg on days 1 and 5, respectively. Subsequent coadministration of the ETA selective antagonist atrasentan (5 mg/kg twice daily) in conjunction with A-192621 (10 mg/kg twice daily) decreased MAP to baseline values on day 6 (99 ± 2 mmHg) and to below baseline on day 8 (89 ± 3 mmHg). In a separate group of mice ( n = 6) in which the treatment was reversed, systemic blockade of ETB receptors produced no hypertension in animals pretreated with atrasentan, underscoring the importance of ETA receptors to maintain the hypertension produced by ETB blockade. In a third group of mice ( n = 10), ETA blockade alone (atrasentan; 5 mg/kg twice daily) produced an immediate and sustained decrease in MAP to values below baseline (baseline values = 101 ± 2 to 103 ± 2 mmHg; atrasentan decreased pressure to 95 ± 2 mmHg). Thus these data suggest that ETA and ETB receptors play a physiologically relevant role in the regulation of basal blood pressure in normal, conscious mice. Furthermore, systemic ETB receptor blockade produces sustained hypertension in conscious telemetry-instrumented mice that is absent in mice pretreated with an ETA antagonist, suggesting that ETA receptors maintain the hypertension produced by ETB blockade.


2017 ◽  
Vol 49 (5S) ◽  
pp. 291
Author(s):  
Jessica Koschate ◽  
Uwe Drescher ◽  
Lutz Thieschäfer ◽  
Edwin Mulder ◽  
Uwe Hoffmann

2019 ◽  
Vol 44 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Graeme M. Purdy ◽  
Marina A. James ◽  
Paige K. Wakefield ◽  
Rachel J. Skow ◽  
Sean Van Diepen ◽  
...  

Blood pressure regulation during pregnancy is poorly understood. Cardiovagal baroreflex gain (BRG) is an important contributor to blood pressure regulation through its influence on heart rate. Heart rate fluctuations occur in response to various physiological stimuli and can be measured using heart rate variability (HRV). It is unclear how these mechanisms operate during pregnancy, particularly with regard to exercise. We examined BRG and HRV prior to, during, and following prenatal exercise. Forty-three pregnant (n = 10 first trimester (TM1), n = 17 second trimester (TM2), n = 16 third trimester (TM3)) and 20 nonpregnant (NP) women underwent an incremental peak exercise test. Beat-by-beat blood pressure (photoplethysmography) and heart rate (lead II electrocardiogram) were measured throughout. BRG (the slope of the relationship between fluctuations in systolic blood pressure and the R–R interval) and HRV (root mean square of the successive differences; RMSSD) were assessed at rest, during steady-state exercise (EX), and during active recovery. BRG decreased with gestation and was lower in the TM3 group than in the NP group (17.9 ± 6.9 ms/mm Hg vs 24.8 ± 7.4 ms/mm Hg, p = 0.017). BRG was reduced during EX in all groups. Resting HRV (RMSSD) also decreased with gestation and was lower in the TM3 group than in the NP group (29 ± 17 ms vs 48 ± 20 ms, p < 0.001). RMSSD was blunted during EX in all groups compared with rest. During active recovery, RMSSD was further blunted compared with EX in the NP group but not during pregnancy (TM1, TM2, and TM3). Compared with the nonpregnant controls, the pregnant women had lower BRG and HRV at rest, but comparable cardioautonomic control during both exercise and active recovery following peak exercise.


2011 ◽  
Vol 96 (6) ◽  
pp. 1519-1525 ◽  
Author(s):  
Agnieszka Zachurzok-Buczynska ◽  
Leslaw Szydlowski ◽  
Aneta Gawlik ◽  
Krzysztof Wilk ◽  
Ewa Malecka-Tendera

1998 ◽  
Vol 30 (Supplement) ◽  
pp. 216
Author(s):  
M. G.C. vanRooijen ◽  
P. Schiereck ◽  
J. Frederiks ◽  
C. A. Swenne ◽  
W. L. Mosterd

2017 ◽  
Vol 313 (3) ◽  
pp. H568-H577 ◽  
Author(s):  
Da Xu ◽  
Ajay K. Verma ◽  
Amanmeet Garg ◽  
Michelle Bruner ◽  
Reza Fazel-Rezai ◽  
...  

Cardiovascular and postural control systems have been studied independently despite the increasing evidence showing the importance of cardiopostural interaction in blood pressure regulation. In this study, we aimed to assess the role of the cardiopostural interaction in relation to cardiac baroreflex in blood pressure regulation under orthostatic stress before and after mild exercise. Physiological variables representing cardiovascular control (heart rate and systolic blood pressure), lower limb muscle activation (electromyography), and postural sway (center of pressure derived from force and moment data during sway) were measured from 17 healthy participants (25 ± 2 yr, 9 men and 8 women) during a sit-to-stand test before and after submaximal exercise. The cardiopostural control (characterized by baroreflex-mediated muscle-pump effect in response to blood pressure changes, i.e., muscle-pump baroreflex) was assessed using wavelet transform coherence and causality analyses in relation to the baroreflex control of heart rate. Significant cardiopostural blood pressure control was evident counting for almost half of the interaction time with blood pressure changes that observed in the cardiac baroreflex (36.6–72.5% preexercise and 34.7–53.9% postexercise). Thus, cardiopostural input to blood pressure regulation should be considered when investigating orthostatic intolerance. A reduction of both cardiac and muscle-pump baroreflexes in blood pressure regulation was observed postexercise and was likely due to the absence of excessive venous pooling and a less stressed system after mild exercise. With further studies using more effective protocols evoking venous pooling and muscle-pump activity, the cardiopostural interaction could improve our understanding of the autonomic control system and ultimately lead to a more accurate diagnosis of cardiopostural dysfunctions. NEW & NOTEWORTHY We examined the interaction between cardiovascular and postural control systems during standing before and after mild exercise. Significant cardiopostural input to blood pressure regulation was shown, suggesting the importance of cardiopostural integration when investigating orthostatic hypotension. In addition, we observed a reduction of baroreflex-mediated blood pressure regulation after exercise.


Sign in / Sign up

Export Citation Format

Share Document