Development of Active Materials and Interface Materials for High Performance Bulk-Heterojunction Polymer Solar Cells

Author(s):  
Chunhui Duan ◽  
Chengmei Zhong ◽  
Fei Huang ◽  
Yong Cao
2015 ◽  
Vol 3 (35) ◽  
pp. 18115-18126 ◽  
Author(s):  
Haimei Wu ◽  
Baofeng Zhao ◽  
Weiping Wang ◽  
Zhaoqi Guo ◽  
Wei Wei ◽  
...  

Over the past few years, it has been proven that deepening the highest occupied molecular orbital (HOMO) levels of conjugated polymers is one of the most successful strategies to develop novel materials for high performance bulk heterojunction polymer solar cells.


2017 ◽  
Vol 10 (6) ◽  
pp. 1443-1455 ◽  
Author(s):  
Seo-Jin Ko ◽  
Quoc Viet Hoang ◽  
Chang Eun Song ◽  
Mohammad Afsar Uddin ◽  
Eunhee Lim ◽  
...  

A new series of wide band gap photovoltaic polymers based on a fluorinated phenylene-alkoxybenzothiadiazole unit with an optical band gap of over 1.90 eV are designed and utilized for high-performance single- and multi-junction bulk heterojunction polymer solar cells.


RSC Advances ◽  
2018 ◽  
Vol 8 (32) ◽  
pp. 18051-18058 ◽  
Author(s):  
M. Imran ◽  
M. Ikram ◽  
A. Shahzadi ◽  
S. Dilpazir ◽  
H. Khan ◽  
...  

In this study, hybrid BHJ – bulk heterojunction polymer solar cells were fabricated by incorporating CdS quantum dots (QDs) in a blend of P3HT (donor) and PCBM (acceptor) using dichlorobenzene and chlorobenzene as solvents.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1423 ◽  
Author(s):  
Xu ◽  
Saianand ◽  
Roy ◽  
Qiao ◽  
Reza ◽  
...  

A compatible low-bandgap donor polymer (poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo [3,4] pyrrole-1,4-dione], PCBTDPP) was judicially introduced into the archetypal poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) photoactive system to fabricate highly efficient ternary based bulk heterojunction polymer solar cells (PSCs). The PCBTDPP ternary-based PSC with optimal loading (0.2 wt.%) displayed outstanding performance with a champion power conversion efficiency (PCE) of 5.28% as compared to the PCE (4.67%) for P3HT:PC61BM-based PSC (reference). The improved PCE for PCBTDPP ternary-based PSC can be mainly attributed to the incorporation of PCBTDPP into P3HT:PC61BM that beneficially improved the optical, morphological, electronic, and photovoltaic (PV) performance. This work instills a rational strategy for identifying components (donor/acceptor (D/A) molecules) with complementary beneficial properties toward fabricating efficient ternary PSCs.


2017 ◽  
Vol 5 (2) ◽  
pp. 712-719 ◽  
Author(s):  
Woosung Lee ◽  
Jae Woong Jung

A novel wide band gap polymer (PIDTT-TT) has been synthesized to use in efficient polymer solar cells with power conversion efficiencies up to 7.10%.


2019 ◽  
Vol 2 (1) ◽  
pp. 163-169 ◽  
Author(s):  
Yanfeng Liu ◽  
Quanzheng Tao ◽  
Yingzhi Jin ◽  
Xianjie Liu ◽  
Hengda Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document