scholarly journals Rule-Set-Based Bi-level Decision Making

Author(s):  
Guangquan Zhang ◽  
Jie Lu ◽  
Ya Gao
Keyword(s):  
2019 ◽  
Author(s):  
Tamara Müller ◽  
Pietro Lio’

AbstractNeurodegenerative diseases such as Alzheimer’s and Parkinson’s impact millions of people worldwide. Early diagnosis has proven to greatly increase the chances of slowing down the diseases’ progression. Correct diagnosis often relies on the analysis of large amounts of patient data, and thus lends itself well to support from machine learning algorithms, which are able to learn from past diagnosis and see clearly through the complex interactions of a patient’s symptoms. Unfortunately, many contemporary machine learning techniques fail to reveal details about how they reach their conclusions, a property considered fundamental when providing a diagnosis. This is one reason why we introduce our Personalisable Clinical Decision Support System PECLIDES that provides a clear insight into the decision making process on top of the diagnosis. Our algorithm enriches the fundamental work of Masheyekhi and Gras in data integration, personal medicine, usability, visualisation and interactivity.Our decision support system is an operation of translational medicine. It is based on random forests, is personalisable and allows a clear insight into the decision making process. A well-structured rule set is created and every rule of the decision making process can be observed by the user (physician). Furthermore, the user has an impact on the creation of the final rule set and the algorithm allows the comparison of different diseases as well as regional differences in the same disease1.


2018 ◽  
Vol 41 ◽  
Author(s):  
Patrick Simen ◽  
Fuat Balcı

AbstractRahnev & Denison (R&D) argue against normative theories and in favor of a more descriptive “standard observer model” of perceptual decision making. We agree with the authors in many respects, but we argue that optimality (specifically, reward-rate maximization) has proved demonstrably useful as a hypothesis, contrary to the authors’ claims.


2018 ◽  
Vol 41 ◽  
Author(s):  
David Danks

AbstractThe target article uses a mathematical framework derived from Bayesian decision making to demonstrate suboptimal decision making but then attributes psychological reality to the framework components. Rahnev & Denison's (R&D) positive proposal thus risks ignoring plausible psychological theories that could implement complex perceptual decision making. We must be careful not to slide from success with an analytical tool to the reality of the tool components.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2014 ◽  
Vol 38 (01) ◽  
pp. 46
Author(s):  
David R. Shanks ◽  
Ben R. Newell

2014 ◽  
Vol 38 (01) ◽  
pp. 48
Author(s):  
David R. Shanks ◽  
Ben R. Newell

2020 ◽  
Vol 43 ◽  
Author(s):  
Valerie F. Reyna ◽  
David A. Broniatowski

Abstract Gilead et al. offer a thoughtful and much-needed treatment of abstraction. However, it fails to build on an extensive literature on abstraction, representational diversity, neurocognition, and psychopathology that provides important constraints and alternative evidence-based conceptions. We draw on conceptions in software engineering, socio-technical systems engineering, and a neurocognitive theory with abstract representations of gist at its core, fuzzy-trace theory.


Sign in / Sign up

Export Citation Format

Share Document